Ncert Solutions Maths class 12th

Get insights from 2.5k questions on Ncert Solutions Maths class 12th, answered by students, alumni, and experts. You may also ask and answer any question you like about Ncert Solutions Maths class 12th

Follow Ask Question
2.5k

Questions

0

Discussions

16

Active Users

65

Followers

New answer posted

2 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let square is made with piece of length x metre & hexagon with piece of length y metre

x + y = 20 .(i)

a = x 4 & b = y 6       

Now let A = area of square + area of hexagon

A = x 2 1 6 + 6 * 3 4 * y 2 3 6 = x 2 1 6 + 3 y 2 2 4 = x 2 1 6 + 3 2 4 ( 2 0 x ) 2 f r o m ( i ) ,

for minimum area

x = 8 0 3 6 + 4 3 = 8 0 3 2 3 ( 3 + 2 ) = 4 0 2 + 3

x = 4 0 ( 2 3 )

=> side of hexagon = y 6 = 2 0 3 ( 2 3 ) 6 = 2 0 3 6 ( 2 + 3 ) = 1 0 3 3 ( 2 + 3 ) = 1 0 2 3 + 3

New answer posted

2 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

y 1 / 4 + 1 y 1 / 4 = 2 x

( y 1 / 4 ) 2 2 x y 1 / 4 + 1 = 0    

=> ( y 1 / 4 ) 2 2 x y 1 / 4 + 1 = 0

d y d x = 4 y x 2 1 . . . . . . . . . . ( i )

( x 2 1 ) d 2 y d x 2 + x d y d x 1 6 y = 0 f r o m ( i )      

=>α = 1, β = -16

|α - β| = 17

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

Equation of the plane will be { r . ( i ^ + j ^ + k ^ ) 1 } + λ { r . ( 2 i ^ + 3 j ^ k ^ ) + 4 } = 0   

r . { ( 1 + 2 λ ) i + ( 1 + 3 λ ) j ^ + ( 1 λ ) k ^ } + ( 4 λ 1 ) = 0               

-> ( 1 + 2 λ ) x + ( 1 + 3 λ ) y + ( 1 λ ) z + ( 4 λ 1 ) = 0 . . . . . . . . . ( i )

(i) is parallel to x-axis so its d.r.s will be (1, 0, 0)

-> 1 + 2 λ = 0 s o λ = 1 2

Hence required equation will be

r { 1 2 j ^ . + 3 2 k ^ } + ( 3 ) = 0

r . ( j ^ 3 k ^ ) + 6 = 0              

             

New answer posted

2 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Given 2x + y – z = 3         . (i)

x – y – z = α        . (ii)

3x + 3y + βz = 3                . (iii)

(i) x 2 – (ii) – (iii) – (1 + β) z = 3 - α

For infinite solution 1 + β = 0 = 3 - α

=> α = 3, β = -1

So, α + β - αβ = 5

New answer posted

2 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

  b * c = | i ^ j ^ k ^ 1 3 β 1 2 3 | = i ^ ( 9 2 β ) j ^ ( 3 + β ) + k ^ ( 5 )             

| b * c | = 5 3 g i v e s ( 9 2 β ) 2 + ( β 3 ) 2 + 2 5 = 5 3         

8 1 + 4 β 2 + 3 6 β + β 2 + 9 6 β + 2 5 = 7 5

β = 2 , 4    

also a b s o a . b = 0 i . e . 1 + 1 5 + α β = 0

So, | a | 2 = 1 + 2 5 + α 2 = 9 0

New answer posted

2 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let f (x) = 3x4 + 4x3 – 12x2 + 4

So, f' (x) = 12x3 + 12x2 – 24x = 12x (x2 + x – 2)

=12x (x + 2) (x – 1)

So, number of distinct real roots = 4

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

l = 0 1 x d x ( 1 + x ) ( 1 + 3 x ) ( 3 + x )

Put x = t2 then dx = 2tdt

l = 0 1 d t ( 1 + t 2 ) ( 3 + t 2 ) 0 1 d t ( 1 + 3 t 2 ) ( 3 + t 2 )

= 1 2 ( t a n 1 t ) 0 1 3 8 3 ( t a n 1 t 3 ) 0 1 8 8 3 ( t a n 1 3 t ) 0 1

= π 8 ( 1 3 2 )      

 

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

Given 2 l + 2 m n = 0 . . . . . . . . ( i )

m n + n l + l m = 0 . . . . . . . . . . . ( i i )

& w e h a v e l 2 + m 2 + n 2 = 1 . . . . . . . . . . ( i i i )

( i ) 2 ( l + m ) = n  

  ( i i ) l m + n ( l + m ) = 0

2 l 2 + 2 m 2 + 5 l m = 0             

(a) lm=2  

(i) 2 l m + 2 n m = 0  

n m = 2  

S o , ( l , m , n ) = ( 2 m , m , 2 m )  

= (-2, 1, -2)

(b)   l m = 1 2 g i v e s n = 2 l

( l , m , n ) = ( l , 2 l , 2 l ) = ( 1 , 2 , 2 )

N o w , c o s θ = 2 2 + 4 3 * 3 = 0

θ = π 2  

             

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

( p q ) ( ( r q ) p )

( p q ) ( ( r q ) p )

[ ( p q ) ( r p ) ]

( p q ) ( r p )

( p q ) ( r p )

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

n ( n + 1 ) x 2 + 2 ( 2 n + 1 ) x + 4

= n ( n + 1 ) x 2 + { ( 2 n + 2 ) + 2 n } x + 4

n = 1 9 x ( n x + 2 ) ( ( n + 1 ) x + 2 )

= n = 1 9 [ 1 n x + 2 1 ( n + 1 ) x + 2 ]

[ ( 1 x + 2 1 2 x + 2 ) + ( 1 2 x + 2 1 3 x + 2 ) + . . . . + ( 1 9 x + 2 1 1 0 x + 2 ) ]

L t x 2 9 x ( 1 0 x + 2 ) ( x + 2 ) = 9 4 4              

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 687k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.