Determinants

Get insights from 194 questions on Determinants, answered by students, alumni, and experts. You may also ask and answer any question you like about Determinants

Follow Ask Question
194

Questions

0

Discussions

5

Active Users

0

Followers

New answer posted

a month ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

f (x) = |sin²x, -2+cos²x, cos2x; 2+sin²x, cos²x, cos2x; sin²x, cos²x, 1+cos2x|.
R? →R? -R? , R? →R? -R?
f (x) = |sin²x, -2+cos²x, cos2x; 2, 2-2cos²x, 0; 0, 2-2cos²x, 1|.
f (x) = sin²x (2-2cos²x) - (-2+cos²x) (2) + cos2x (2 (2-2cos²x).
This seems tedious. From the solution, f (x)=4+2cos2x.
Max value when cos2x=1, f (x)=6.

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

R? → R? -R? , R? → R? -R?
|sinx-cosx, cosx-sinx, 0; 0, sinx-cosx, cosx-sinx; cosx, sinx| = 0
(sinx-cosx)² |1, -1, 0; 0, 1, -1; cosx, sinx| = 0
(sinx-cosx)² (1 (sinx+cosx) + 1 (cosx) = 0
(sinx-cosx)² (sinx + 2cosx) = 0
sin x = cos x
tan x = 1 ⇒ x = π/4
or
sin x = -2cos x
tan x = -2
Not within given range.

New answer posted

a month ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

A = [ 2 1 1 1 2 1 1 1 2 ] | A | = 4 | 3 a d j ( 2 A 1 ) | = | 3 . 2 2 a d j ( A 1 ) |

1 2 3 | a d j ( A 1 ) | = 1 2 3 | A 1 | 2 = 1 2 3 | A | 2 = 1 2 * 1 2 * 1 2 1 6 = 1 0 8

New question posted

a month ago

0 Follower 2 Views

New answer posted

2 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

| 2 A | = 2 3 | A |

replace A by adj 2A

  | 2 a d j 2 A | = 2 3 | a d j 2 A |           

= 2 3 | 2 A | 2 = 2 3 ( 2 3 | A | ) 2

= 2 9 | A | 2              

Again replace A by (adj A)

|2adj 2 (adj (adj 2A)| = 29 |adj 2A|4

= 29 (|2A|2)4

->|A2| = 4

New answer posted

2 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

  Δ = | 3 s i n 3 θ 1 1 3 c o s 2 θ 4 3 6 7 7 |

= 3 sin3θ (28 – 21) + (21 cos 2θ - 18) + 1 (21 cos 2θ - 24)

Δ = 2 1 s i n 3 θ + 4 2 c o s 2 θ 4 2          

for no solution

sin 3θ + 2 cos 2θ = 2

θ = π , 2 π , 3 π , π 6 , 5 π 6 , 1 3 π 6 , 1 7 π 6

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

( a * b ) * i ^ = ( a . i ^ ) b ( b . i ^ ) a

( ( a * b ) * i ^ ) . k ^ = ( a . i ^ ) ( b . k ^ ) ( b . i ^ ) ( a . k ^ )

New answer posted

2 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

c o s 1 ( y 2 ) = l o g e ( x 5 ) 5 , | y | < 2  

 Differentiating on both side

1 1 ( y 2 ) 2 * y ' 2 = 5 x 5 * 1 5  

x y ' 2 = 5 1 ( y 2 ) 2

Square on both side

x 2 y ' 2 4 = 2 5 ( 4 y 2 4 )

Diff on both side

x y ' + y ' ' x 2 + 2 5 y = 0  

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

Δ = 0

| 1 1 1 2 5 α 1 2 3 | = 0

15 - 2a + a - 6 – 1 = 0

a = 8

For a = 8, equations are

x + y + 3 = 6

2x + 5y + 8z = b

x + 2y + 3z = 14

( 2 , 5 , 8 ) = l ( 1 , 1 , 1 ) + m ( 1 , 2 , 3 )

2 = l + m 5 = l + 2 m ] 3 = m , l = 1              

8 =  l+3m

β = 6 l + 1 4 m

= -6 + 42 = 36

a + b = 8 + 36 = 44

New answer posted

2 months ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

Let f(x) = x 2 9 x 5  

  f ' ( x ) = 2 x ( x 5 ) ( x 2 9 ) ( x 5 ) 2

= x 2 1 0 x + 9 ( x 5 ) 2 = ( x 1 ) ( x 9 ) ( x 5 ) 2

α = f ( 1 ) = 2 , β = { f ( 0 ) , f ( 2 ) } = 5 3

1 3 m a x { x 2 9 x 5 , x } d x + [ x 2 2 ] 9 / 5 3           

a1 = 18, a2 = 16

a1 + a2 = 34

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.