Class 11th

Get insights from 8k questions on Class 11th, answered by students, alumni, and experts. You may also ask and answer any question you like about Class 11th

Follow Ask Question
8k

Questions

0

Discussions

38

Active Users

0

Followers

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

This is an Objective Type Questions as classified in NCERT Exemplar

L e t z = 1 i s i n α 1 + 2 i s i n α = ( 1 i s i n α ) ( 1 2 i s i n α ) ( 1 + 2 i s i n α ) ( 1 2 i s i n α ) = 1 2 i s i n α i s i n α + 2 i 2 s i n 2 α ( 1 ) 2 ( 2 i s i n α ) 2 = 1 3 i s i n α 2 s i n 2 α 1 4 i 2 s i n 2 α = ( 1 2 s i n 2 α ) 3 i s i n α 1 + 4 s i n 2 α = 1 2 s i n 2 α 1 + 4 s i n 2 α 3 s i n α 1 + 4 s i n 2 α . i Since,zispurelyreal,then 3 s i n α 1 + 4 s i n 2 α = 0 s i n α = 0 S o , α = n π , n N . H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

This is an Objective Type Questions as classified in NCERT Exemplar

L e t z = s i n x + i c o s 2 x z ¯ = s i n x i c o s 2 x B u t w e a r e g i v e n t h a t z ¯ = c o s x i s i n 2 x s i n x i c o s 2 x = c o s x i s i n 2 x C o m p a r i n g t h e r e a l a n d i m a g i n a r y p a r t s , w e g e t s i n x = c o s x a n d c o s 2 x = s i n 2 x t a n x = 1 a n d t a n 2 x = 1 t a n x = t a n π 4 a n d t a n 2 x = t a n π 4 x = n π + π 4 , n I a n d 2 x = n π + π 4 x = 2 x 2 x x = 0 x = 0 H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

This is Other Questions as classified in NCERT Exemplar

G i v e n t h a t : | z 5 i z + 5 i | = 1 L e t z = x + y i | x + y i 5 i x + y i + 5 i | = 1 | x + ( y 5 ) i x + ( y + 5 ) i | = 1 | x + ( y 5 ) i | = | x + ( y + 5 ) i | x 2 + ( y 5 ) 2 = x 2 + ( y + 5 ) 2 ( y 5 ) 2 = ( y + 5 ) 2 y 2 + 2 5 1 0 y = y 2 + 2 5 + 1 0 y 2 0 y = 0 y = 0 H e n c e , z l i e s o n x a x i s i . e . , r e a l a x i s .

New answer posted

4 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

This is Other Questions as classified in NCERT Exemplar

G i v e n t h a t : ( 1 + i 3 ) 2 = 1 + i 2 . 3 + 2 3 i = 1 3 + 2 3 i = 2 + 2 3 i t a n α = | 2 3 2 | [ ? t a n α = | I m g ( z ) R e ( z ) | ] t a n α = | 3 | = 3 t a n α = t a n π 3 α = π 3 N o w R e ( z ) < 0 a n d i m a g e ( z ) > 0 a r g ( z ) = π α = π π 3 = 2 π 3 H e n c e , t h e p r i n c i p l e a r g = 2 π 3 .

New answer posted

4 months ago

0 Follower 7 Views

V
Vishal Baghel

Contributor-Level 10

4.22

Let us consider a vector P? . The equation can be written as

Px = Py = 1 P? = (Px2+Py2) P? = (12+12)P? = 2 …….(i)

So the magnitude of vector i? + j? = 2

Let θ be the angle made by vector P? , with the x axis as given in the above figure

tan?θ = Px/Pyθ = tan-1?(1/1) , θ = 45 ° with the x axis

Let Q? = i? - j?

Qx?i? – Qy? j? = ( i? – j?)

Qx? = Qy? = 1

Q? = Qx2+Qy2 = 2

Hence Q? = 2 . Therefore the magnitude of ( i? + j?) = 2

Let θ be the angle made

...more

New answer posted

4 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

This is Other Questions as classified in NCERT Exemplar

G i v e n t h a t : | ( 1 + i ) ( 2 + i ) ( 3 + i ) | | ( 1 + i ) ( 2 + i ) ( 3 + i ) * 3 i 3 i | = | ( 1 + i ) . 6 2 i + 3 i i 2 9 i 2 | = | ( 1 + i ) . ( 7 + i ) 9 + 1 | = | 7 + i + 7 i + i 2 1 0 | = | 7 + 8 i 1 1 0 | = | 6 + 8 i 1 0 | = | 3 5 + 4 5 i | = ( 3 5 ) 2 + ( 4 5 ) 2 = 9 2 5 + 1 6 2 5 = 2 5 2 5 = 1 H e n c e , | ( 1 + i ) ( 2 + i ) ( 3 + i ) | = 1

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

This is Other Questions as classified in NCERT Exemplar

L e t z 1 = x 1 + y 1 i a n d z 2 = x 2 + y 2 i | x 1 + y 1 i | = | x 2 + y 2 i | x 1 2 + y 1 2 = x 2 2 + y 2 2 x 1 2 + y 1 2 = x 2 2 + y 2 2 x 1 2 = x 2 2 a n d y 1 2 = y 2 2 x 1 = ± x 2 a n d y 1 = ± y 2 S o , z 1 = x 1 + y 1 i a n d z 2 = ± x 2 ± y 2 i z 1 z 2 H e n c e , i t i s n o t n e c e s s a r y t h a t z 1 = z 2 .

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

This is Other Questions as classified in NCERT Exemplar

L e t z 1 = x 1 + y 1 i a n d z 2 = x 2 + y 2 i | x 1 + y 1 i | = | x 2 + y 2 i | x 1 2 + y 1 2 = x 2 2 + y 2 2 x 1 2 + y 1 2 = x 2 2 + y 2 2 x 1 2 = x 2 2 a n d y 1 2 = y 2 2 x 1 = ± x 2 a n d y 1 = ± y 2 S o , z 1 = x 1 + y 1 i a n d z 2 = ± x 2 ± y 2 i z 1 z 2 H e n c e , i t i s n o t n e c e s s a r y t h a t z 1 = z 2 .

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

This is Other Questions as classified in NCERT Exemplar

G i v e n t h a t z = 2 i ( 1 2 i ) 2 = 2 i 1 + 4 i 2 4 i = 2 i 1 4 4 i = 2 i 3 4 i = 2 i 3 4 i * 3 + 4 i 3 + 4 i = 6 + 8 i + 3 i 4 i 2 ( 3 ) 2 ( 4 i ) 2 = 6 + 1 1 i + 4 9 1 6 i 2 = 2 + 1 1 i 9 + 1 6 = 2 2 5 + 1 1 2 5 i z ¯ = 2 2 5 1 1 2 5 i H e n c e , z ¯ = 2 2 5 1 1 2 5 i

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

This is Other Questions as classified in NCERT Exemplar

G i v e n t h a t : | z | = 4 a n d a r g ( z ) = 5 π 6 θ = 5 π 6 | z | = 4 r = 4 S o P o l a r f o r m o f z = r [ c o s θ + i s i n θ ] = 4 [ c o s 5 π 6 + i s i n 5 π 6 ] = 4 [ c o s ( π π 6 ) + i s i n ( π π 6 ) ] = 4 [ c o s π 6 + i s i n π 6 ] = 4 [ 3 2 + i . 1 2 ] = 2 3 + 2 i H e n c e , z = 2 3 + 2 i .

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 679k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.