Maths NCERT Exemplar Solutions Class 11th Chapter Thirteen: Overview, Questions, Preparation

Maths NCERT Exemplar Solutions Class 11th Chapter Thirteen 2025 ( Maths NCERT Exemplar Solutions Class 11th Chapter Thirteen )

alok kumar singh
Updated on Jul 7, 2025 16:04 IST

By alok kumar singh, Executive Content Operations

Table of content
  • Limits and Derivatives Short Answer Type Questions
  • Limits and Derivatives Long Answer Type Questions
  • Limits and Derivatives Objective Type Questions
  • Limits and Derivatives Fill in the blanks
Maths NCERT Exemplar Solutions Class 11th Chapter Thirteen Logo

Limits and Derivatives Short Answer Type Questions

1. l i m x 3 x 2 9 x 3

Sol:

G i v e n t h a t l i m x 0 x 2 9 x 3 = l i m x 0 ( x + 3 ) ( x 3 ) ( x 3 ) = l i m x 0 x + 3 T a k i n g , w e h a v e 3 + 3 = 6 .

2.  l i m x 1 / 2 4 x 2 1 2 x 1

Sol:

G i v e n t h a t l i m x 1 2 4 x 2 1 2 x 1 = l i m x 1 2 ( 2 x ) 2 ( 1 ) 2 2 x 1 = l i m x 1 2 ( 2 x 1 ) ( 2 x + 1 ) 2 x 1 = l i m x 1 2 2 x + 1 T a k i n g , w e h a v e 2 × 1 2 + 1 = 1 + 1 = 2

Q&A Icon
Commonly asked questions
Q:  

Kindly consider the following

l i m x 3 x 2 9 x 3

A: 

This is Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimx0x29x3=limx0 (x+3) (x3) (x3)=limx0x+3Taking, wehave3+3=6.

Q:  

Kindly consider the following

limx1/24x212x1

A: 

This is Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimx124x212x1=limx12(2x)2(1)22x1=limx12(2x1)(2x+1)2x1=limx122x+1Taking,wehave2×12+1=1+1=2

Q:  

Kindly consider the following

 limh0x+hxh

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimh0x+hxh=limh0x+hxh×x+h+xx+h+x[Rationalizingthe denominator]=limh0x+hxh[x+h+x]=limh0hh[x+h+x]=limh01x+h+xTaking limit ,wehave1x+x=12x.

Q:  

 Kindly consider the following

limx0(x+2)13213x

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimx0(x+2)13213xPutx+2=yx=y2=limy20y13213y2=limy2y13213y2=13.(2)131=13.223[ Usinglimxaxnanxa=n.an1]

Q:  

Kindly consider the following

 limx1(1+x)61(1+x)21

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimx0(1+x)61(1+x)21Dividingthenumeratorand denominatorbyx,weget=limx0(1+x)61x(1+x)21xPut1+x=yx=y1=limy10y6(1)6y1y2(1)2y1=limy1y6(1)6y1limy1y2(1)2y1[limxaf(x)g(x)=limxaf(x)limxag(x)]=6.(1)612.(1)21=62=3[limxaxnanxa=n.an1]

Q:  

Kindly consider the following

 limxa(2+x)52(a+2)52(xa)

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimxa(2+x)52(a+2)52(xa)=lim2+xa+2(2+x)52(a+2)52(2+x)(a+2)=52(a+2)521=52(a+2)32[?limxaxnanxa=n.an1]

Q:  

Kindly consider the following

limx1x4xx1

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimx1x4xx1=limx1x[(x)7/21]x1Dividingthenumeratorand denominatorbyx1=limx1x[(x)7/2(1)7/2]x1(x)1/2(1)1/2x1=limx1(x)7/2(1)7/2x1(x)1/2(1)1/2x1×limx1x[?limxaf(x).g(x)=limxaf(x).limxag(x)]=72(1)7/2112(1)1/21×1=7/21/2=7.

Q:  

Kindly consider the following

limx2x243x2x+2

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimx2x243x2x+2Rationalizingthe denominatorweget=limx2(x2)(x+2)3x2x+2×3x2+x+23x2+x+2=limx2(x2)(x+2)(3x2+x+2)3x2x2=limx2(x2)(x+2)(3x2+x+2)2x4=limx2(x2)(x+2)(3x2+x+2)2(x2)=limx2(x+2)(3x2+x+2)2Taking limits ,wehave=(2+2)(62+2+2)2=4(2+2)2=8

Q:  

Kindly consider the following

limx2x44x2+32x8

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimx2x44x2+32x8=limx2(x22)(x2+2)x2+42x2x8=limx2(x+2)(x2)(x2+2)x(x+42)2(x+42)=limx2(x+2)(x2)(x2+2)(x+42)(x2)=limx2(x+2)(x2+2)(x+42)Taking,wehave=(2+2)(2+2)2+42=22×452=85.

Q:  

Kindly consider the following 

limx3x72x51x3+3x2+2

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimx1x72x51x3+3x2+2[00form]=limx1x7x5x51x3x22x2+2=limx1x5(x21)1(x51)x2(x1)2(x21)Dividingthenumeratorand denominatorby(x1)weget=limx1x5(x21x1)1(x51x1)x2(x1x1)2(x21x1)=limx1x5(x+1)limx1(x5(1)5x1)limx1x212limx1(x+1)=1(2)5.(1)5112(2)=2514=33=1

Q:  

Kindly consider the following

limx01+x31x3x2

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimx01+x31x3x2Rationalizingthe denominator,weget=limx01+x31x3x2×1+x3+1x31+x3+1x3=limx0(1+x3)(1x3)x2[1+x3+1x3]=limx01+x31+x3x2[1+x3+1x3]=limx02x3x2[1+x3+1x3]=limx02x1+x3+1x3=0

Q:  

Kindly consider the following

 limx3x3+27x5+243

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimx3x3+27x5+243Dividingthenumeratorand denominator,byx3weget=limx3x3+(3)3x3x5+(3)5x3=limx3(x3(3)3x3)limx3(x5(3)5x3)[?limxaf(x)g(x)=limxaf(x)limxag(x)]=3(3)315(3)51[?limxaxnanxa=n.an1]=3×(3)25×(3)4=15×3=115



Q:  

Kindly consider the following

limx128x32x14x2+14x21

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimx12(8x32x14x2+14x21)=limx12[(8x3)(2x+1)(4x2+1)(4x21)]=limx12[16x26x+8x34x214x21]=limx12[12x2+2x44x21]=limx122(6x2+x2)4x21=limx122(6x2+4x3x2)(2x+1)(2x1)=limx122[2x(3x+2)1(3x+2)](2x+1)(2x1)=limx122(3x+2)(2x1)(2x+1)(2x1)=limx122(3x+2)(2x+1)Taking limit,wehave=2(3×12+2)2×12+1=2(72)2=72

Q:  

Find n , if limx2xn2nx2=80 , n∈N
 .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimx2xn2nx2=80n.(2)n1=80[?limxaxnanxa=n.an1]n×2n1=5×(2)51n=5

Q:  

Kindly consider the following

limxasin 3xsin 7x

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimx0sin 3xsin 7x=limx0sin 3x3x×3xsin 7x7x×7x=lim3x0(sin 3x3x)lim3x0(sin 7x7x)×37=11×37=37[?limx0sin xx=1]

Q:  

Kindly consider the following

 limx0sin22xsin24x

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimx0sin22xsin24x=limx0sin22xsin22(2x)=limx0sin22x4sin22x.cos22x[sin2x=2sinxcosx]=limx014cos22xTaking limit ,wehave=14.cos20=14

Q:  

Kindly consider the following
limx01cos2xx2

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimx01cos2xx2=limx02sin2xx2[cos2x=12sin2x]=limx02(sinxx)2=2×1=2[?limx0sinxx=1]

Q:  

Kindly consider the following

 limx02sin xsin 2xx3

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimx02sin xsin 2xx3=limx02sin x2sin xcosxx3=limx02sin x(1cosx)x3=limx02sin xx(1cosxx2)=limx02(sin xx)(2sin2x/2x2)=limx02(sin xx)(2sin2x/2x24×14)=limx02(sin xx)2(sinx/2x2)2×14=limx044(sin xx)limx20(sinx/2x2)2=1.1.(1)2=1[?limx0sin xx=1]

Q:  

Kindly consider the following

 limx01cos mx1cos nx

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimx01cosmx1cosnx=limx0(11+2sin2mx211+2sin2nx2)[?cosmx=12sin2mx2]=limx0(2sin2mx22sin2nx2)=limx0(sinmx2sinnx2)2=limx0(sinmx2mx2×mx2)limx0(sinnx2nx2×nx2)=1.m2x241.n2x24=m2n2[?limx0sinxx=1]

Q:  

Kindly consider the following
limxπ31cos 6x2 (π 3x)

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimxπ31cos 6x2 (π 3x)=limxπ32sin23x2 (π 3x)[?1cosθ=2sin2θ2]=limxπ32sin3x2 (π 3x)=limπ3x03.sin(π3x)π3x=3[?limx0sinxx=1]

Q:  

Kindly consider the following
limxπ4sin xcos xxπ4

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimxπ4sinxcosxxπ4=limxπ42(12sinx12cosx) xπ4=limxπ42(cosπ4sinxsinπ4cosx) xπ4=limxπ42sin(xπ4) xπ4[?sin(ab)=sinacosbcosasinb]=2limxπ4sin(xπ4) xπ4=2.1=2[?limx0sinxx=1]

Q:  

Kindly consider the following
limxπ63sin xcos xxπ6

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimxπ63sinxcosxxπ6=limxπ62[32sinx12cosx]xπ6=limxπ62[cosπ6sinxsinπ6cosx]xπ6=limxπ62sin(xπ6)xπ6[?sin(AB)=sinAcosBcosAsinB]=2limxπ6sin(xπ6)xπ6=2.1=2[?limx0sinxx=1]

Q:  

Kindly consider the following
limx0sin 2x+ 3x2x+tan3x

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimx0sin 2x+ 3x2x+tan3x=limx0(sin 2x+ 3x2x×2x)(2x+tan3x3x×3x)=limx0(sin 2x2x+3x2x)×2x(2x3x+tan3x3x)×3x=(lim2x0sin 2x2x+32)[23+lim3x0tan3x3x]×23[?limx0sinxx=1]=(1+3223+1)×23[?limx0tanxx=1]=5/25/3×23=32×23=1

Q:  

Kindly consider the following
limxasin xsin axa

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimxasinxsinaxa=limxasinxsinaxa×x+ax+a=limxa(sinxsina)(x+a)xa=limxa(2cosx+a2.sinxa2)(x+a)xa[?sinAsinB=2cosA+B2.sinAB2]=limxa20(2cosx+a2.sinxa22×xa2)(x+a)=limxacos(x+a2)(x+a)[?limxa20sinxa2xa2=1]Taking,wehave=cos(a+a2)(a+a)=cosa×2a=2a.cosa

Q:  

Kindly consider the following

limxπ6cot3x3cose cx2

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimxπ6cot2x3cosecx2=limxπ6cosec2x13cosecx2=limxπ6cosec2x4cosecx2=limxπ6(cosecx2)(cosecx+2)(cosecx2)=limxπ6(cosecx+2)Taking,wehave=cosecπ6+2=2+2=4

Q:  

Kindly consider the following

 limx021+cos xsin2x

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimx021+cosxsin2x=limx021+cosxsin2x×2+1+cosx2+1+cosx=limx02(1+cosx)sin2x[2+1+cosx]=limx01cosxsin2x[2+1+cosx]=limx02sin2x/2(2sinx/2cosx/2)2×1[2+1+cosx]=limx02sin2x/24sin2x/2cos2x/2×1[2+1+cosx]=limx024cos2x/2×1[2+1+cosx]Taking,wehave=24cos20×1[2+2]=12×122=142

Q:  

Kindly consider the following
limx0sin x2sin 3x+sin 5xx

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimx0sinx2sin3x+sin 5xx=limx0sinxx2sin3xx+sin 5xx=limx0sinxxlim3x02 (sin3x3x)×3+lim5x0 (sin 5x5x)×5=16+5=0.

Q:  

If limx1x41x1=limxkx3k3x2k2 , then find the value of k .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimx1x41x1=limxkx3k3x2k24(1)41=limxk(xk)(x2+k2+kx)(xk)(x+k)4=limxkx2+k2+kxx+k4=k2+k2+k22k4=3k22k4=32kk=83.

Q:  

Differentiate each of the functions w.r.t. x in Exercises 29 to 42.

 x4+x3+x2+x+1x

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Lety= (x4+x3+x2+x+1x)dydx=ddx (x4+x3+x2+x+1x)=ddx (x3+x2+x+1x)=3x2+2x+11x2

Q:  

Kindly consider the following
(x+1x)3

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Lety=(x+1x)3dydx=ddx(x+1x)3=ddx(x3+1x3+3x+3x)=ddx(x3+x3+3x+3.x1)=3x23x4+33.x2=3x23x4+33x2

Q:  

Kindly consider the following

(3x+5)(1+tan x)

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Lety=(3x+5)(1+tanx)dydx=ddx(3x+5)(1+tanx)=(3x+5)ddx(1+tanx)+(1+tanx)ddx(3x+5)[?ddx[f(x).g(x)]=f(x).g'(x)+g(x).f'(x)]=(3x+5)sec2x+(1+tanx)(3)=3xsec2x+5sec2x+3+3tanx

Q:  

Kindly consider the following
(sec x1)(sec x+1)

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Lety=(secx1)(secx+1)=(sec2x1)[?a2b2=(ab)(a+b)]=tan2x[?tan2x=sec2x1]dydx=ddxtan2x=2tanxddxtanx=2tanx.sec2x

Q:  

Kindly consider the following

 3x+45x27x+9

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Lety=3x+45x27x+9dydx=ddx(3x+45x27x+9)=(5x27x+9)ddx(3x+4)(3x+4)ddx(5x27x+9)(5x27x+9)2[ Using quotientrule]=(5x27x+9)(3)(3x+4)(10x7)(5x27x+9)2=15x221x+2730x2+21x40x+28(5x27x+9)2=15x240x+55(5x27x+9)2=5540x15x2(5x27x+9)2

Q:  

Kindly consider the following

x5cos xsin x

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Lety=x5cosxsinxdydx=ddx(x5cosxsinx)=sinxddx(x5cosx)(x5cosx)ddx(sinx)sin2x[quotientrule]=sinx(5x4+sinx)(x5cosx)(cosx)sin2x=5x4.sinx+sin2xx5cosx+cos2xsin2x=5x4.sinxx5cosx+(sin2x+cos2x)sin2x=5x4.sinxx5cosx+1sin2x

Q:  

Kindly consider the following
x2cosπ4sinx

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Lety=x2cosπ4sinxdydx=ddx(x2cosπ4sinx)=cosπ4.ddx(x2sinx)=12[sinxddx(x2)x2ddx(sinx)]sin2x[quotientrule]=12.[sinx.2xx2cosxsin2x]=12[2xsinxx2cosxsin2x]=12[2xcosecxx2cotxcosecx]=x2cosecx[2xcotx]

Q:  

Kindly consider the following

(ax2+cot x)(p+q cos x)

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Lety=(ax2+cotx)(p+q cosx)dydx=ddx(ax2+cotx)(p+q cosx)=(ax2+cotx)ddx(p+q cosx)+(p+q cosx)ddx(ax2+cotx)[Usingproductrule]=(ax2+cotx)(qsinx)+(p+q cosx)(2axcosec2x)=qsinx(ax2+cotx)+(p+q cosx)(2axcosec2x)

Q:  

Kindly consider the following

37. a+b sin xc+d cos x

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Lety=a+b sinxc+dcosxdydx=ddx(a+b sinxc+dcosx)=(c+dcosx)ddx(a+b sinx)(a+b sinx)ddx(c+dcosx)(c+dcosx)2[ Using quotientrule]=(c+dcosx)(b cosx)(a+b sinx)ddx(dsinx)(c+dcosx)2=cbcosx+bdcos2x+adsinx+bdsin2x(c+dcosx)2=cbcosx+adsinx+bd(sin2x+cos2x)(c+dcosx)2=cbcosx+adsinx+bd(c+dcosx)2

Q:  

Kindly consider the following
(sin x+cos x)2

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Lety=(sinx+cosx)2dydx=ddx(sinx+cosx)2=2(sinx+cosx)ddx(sinx+cosx)=2(sinx+cosx)(cosxsinx)=2(cos2xsin2x)=2cos2x[?cos2x=cos2xsin2x]

Q:  

Kindly consider the following

(2x7)2(3x+5)3

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Lety=(2x7)2(3x+5)3dydx=ddx(2x7)2(3x+5)3=(2x7)2ddx(3x+5)3+(3x+5)3ddx(2x7)2[Usingproductrule]=(2x7)2.3(3x+5)2.3+(3x+5)3.2(2x7).2=9(2x7)2(3x+5)2+4(3x+5)3(2x7)=(2x7)(3x+5)2[9(2x7)+4(3x+5)]=(2x7)(3x+5)2[18x63+12x+20]=(2x7)(3x+5)2(30x43)=(2x7)(30x43)(3x+5)2

Q:  

Kindly consider the following
x2sinx+cos2x

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Lety=x2sinx+cos2xdydx=ddx (x2sinx+cos2x)=ddx (x2sinx)+ddx (cos2x)=x2cosx+sinx.2x+ (2sin2x)=x2cosx+2xsinx2sin2x

Q:  

Kindly consider the following
sin3xcos3x

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Lety=sin3xcos3xdydx=ddx(sin3xcos3x)=sin3xddx(cos3x)+cos3x.ddx(sin3x)[Usingproductrule]=sin3x.3cos2x(sinx)+cos3x.3sin2x.cosx=3sin4x.cos2x+3cos4x.sin2x=3sin2x.cos2x(sin2x+cos2x)=3sin2x.cos2x.cos2x=34.4sin2x.cos2x.cos2x=34(2sinx.cosx)2.cos2x=34sin22x.cos2x

Q:  

Kindly consider the following
 1ax2+bx+c

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Lety= 1ax2+bx+cdydx=ddx(1ax2+bx+c)=(ax2+bx+c)ddx(1)1.ddx(ax2+bx+c)(ax2+bx+c)2[ Using quotientrule]=(ax2+bx+c)×0(2ax+b)(ax2+bx+c)2=(2ax+b)(ax2+bx+c)2

Maths NCERT Exemplar Solutions Class 11th Chapter Thirteen Logo

Limits and Derivatives Long Answer Type Questions

Differentiate each of the functions with respect to ‘x’ in Exercises 43 to 46 using first principle.       

1. c o s ( x 2 + 1 )

Sol:

L e t f ( x ) = c o s ( x 2 + 1 ) ( i ) f ( x + Δ x ) = c o s [ ( x + Δ x ) 2 + 1 ] ( i i ) S u b t r a c t i n g e q n . ( i ) f r o m e q n . ( i i ) f ( x + Δ x ) f ( x ) = c o s [ ( x + Δ x ) 2 + 1 ] c o s ( x 2 + 1 ) D i v i d i n g b o t h s i d e s b y Δ x w e g e t f ( x + Δ x ) f ( x ) Δ x = c o s [ ( x + Δ x ) 2 + 1 ] c o s ( x 2 + 1 ) Δ x l i m Δ x 0 f ( x + Δ x ) f ( x ) Δ x = l i m Δ x 0 c o s [ ( x + Δ x ) 2 + 1 ] c o s ( x 2 + 1 ) Δ x f ' ( x ) = l i m Δ x 0 c o s [ ( x + Δ x ) 2 + 1 ] c o s ( x 2 + 1 ) Δ x = l i m Δ x 0 2 s i n [ ( x + Δ x ) 2 + 1 + x 2 + 1 2 ] . s i n [ ( x + Δ x ) 2 + 1 x 2 1 2 ] Δ x = l i m Δ x 0 2 s i n [ x 2 + Δ x 2 + 2 x Δ x + x 2 + 2 2 ] . s i n [ x 2 + Δ x 2 + 2 x Δ x x 2 2 ] Δ x = l i m Δ x 0 2 s i n [ x 2 + Δ x 2 2 + x Δ x + 1 ] . s i n [ Δ x ( Δ x + 2 x ) 2 ] Δ x = l i m Δ x 0 2 s i n [ x 2 + Δ x 2 2 + x Δ x + 1 ] . s i n [ Δ x ( Δ x + 2 x ) 2 ] Δ x [ Δ x + 2 x 2 ] × [ Δ x + 2 x 2 ] = l i m Δ x [ Δ x + 2 x 2 ] 0 2 s i n [ x 2 + Δ x 2 2 + x Δ x + 1 ] s i n [ Δ x ( Δ x + 2 x ) 2 ] Δ x [ Δ x + 2 x 2 ] × [ Δ x + 2 x 2 ] T a k i n g  limit , w e h a v e = 2 s i n ( x 2 + 1 ) . 1 . ( x ) = 2 x s i n ( x 2 + 1 ) .

 

2. a x + b c x + d

Sol:

L e t f ( x ) = a x + b c x + d ( i ) f ( x + Δ x ) = a ( x + Δ x ) + b c ( x + Δ x ) + d ( i i ) S u b t r a c t i n g e q n . ( i ) f r o m e q n . ( i i ) f ( x + Δ x ) f ( x ) = a ( x + Δ x ) + b c ( x + Δ x ) + d a x + b c x + d D i v i d i n g b o t h s i d e s b y Δ x a n d t a k e t h e w e g e t l i m Δ x 0 f ( x + Δ x ) f ( x ) Δ x = l i m Δ x 0 a ( x + Δ x ) + b c ( x + Δ x ) + d a x + b c x + d Δ x f ' ( x ) = l i m Δ x 0 ( a x + a Δ x + b ) ( c x + d ) ( a x + b ) ( c x + c Δ x + d ) [ c ( x + Δ x ) + d ] ( c x + d ) . Δ x = l i m Δ x 0 a c x 2 + a c Δ x . x + b c x + a d x + a d Δ x + b d a c x 2 a c Δ x . x a d x b c x b c . Δ x b d ( c x + c Δ x + d ) ( c x + d ) Δ x = l i m Δ x 0 ( a d b c ) Δ x ( c x + c Δ x + d ) ( c x + d ) . Δ x = l i m Δ x 0 ( a d b c ) ( c x + c . Δ x + d ) ( c x + d ) T a k i n g  limit , w e h a v e = ( a d b c ) ( c x + d ) ( c x + d ) = ( a d b c ) ( c x + d ) 2

Q&A Icon
Commonly asked questions
Q:  

Differentiate each of the functions with respect to ‘x’ in Exercises 43 to 46 using first principle.       

cos(x2+1)

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Letf(x)=cos(x2+1)(i)f(x+Δx)=cos[(x+Δx)2+1](ii)Subtractingeqn.(i)fromeqn.(ii)f(x+Δx)f(x)=cos[(x+Δx)2+1]cos(x2+1)DividingbothsidesbyΔxwegetf(x+Δx)f(x)Δx=cos[(x+Δx)2+1]cos(x2+1)ΔxlimΔx0f(x+Δx)f(x)Δx=limΔx0cos[(x+Δx)2+1]cos(x2+1)Δxf'(x)=limΔx0cos[(x+Δx)2+1]cos(x2+1)Δx=limΔx02sin[(x+Δx)2+1+x2+12].sin[(x+Δx)2+1x212]Δx=limΔx02sin[x2+Δx2+2xΔx+x2+22].sin[x2+Δx2+2xΔxx22]Δx=limΔx02sin[x2+Δx22+xΔx+1].sin[Δx(Δx+2x)2]Δx=limΔx02sin[x2+Δx22+xΔx+1].sin[Δx(Δx+2x)2]Δx[Δx+2x2]×[Δx+2x2]=limΔx[Δx+2x2]02sin[x2+Δx22+xΔx+1]sin[Δx(Δx+2x)2]Δx[Δx+2x2]×[Δx+2x2]Taking limit,wehave=2sin(x2+1).1.(x)=2xsin(x2+1).

Q:  

Kindly consider the following

ax+bcx+d

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Letf(x)=ax+bcx+d(i)f(x+Δx)=a(x+Δx)+bc(x+Δx)+d(ii)Subtractingeqn.(i)fromeqn.(ii)f(x+Δx)f(x)=a(x+Δx)+bc(x+Δx)+dax+bcx+dDividingbothsidesbyΔxandtakethewegetlimΔx0f(x+Δx)f(x)Δx=limΔx0a(x+Δx)+bc(x+Δx)+dax+bcx+dΔxf'(x)=limΔx0(ax+aΔx+b)(cx+d)(ax+b)(cx+cΔx+d)[c(x+Δx)+d](cx+d).Δx=limΔx0acx2+acΔx.x+bcx+adx+adΔx+bdacx2acΔx.xadxbcxbc.Δxbd(cx+cΔx+d)(cx+d)Δx=limΔx0(adbc)Δx(cx+cΔx+d)(cx+d).Δx=limΔx0(adbc)(cx+c.Δx+d)(cx+d)Taking limit,wehave=(adbc)(cx+d)(cx+d)=(adbc)(cx+d)2

Q:  

Kindly consider the following

 x23

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Letf(x)=x2/3(i)f(x+Δx)=(x+Δx)2/3(ii)Subtractingeqn.(i)fromeqn.(ii)f(x+Δx)f(x)=(x+Δx)2/3x2/3DividingbothsidesbyΔxandtakethewegetlimΔx0f(x+Δx)f(x)Δx=limΔx0(x+Δx)2/3x2/3Δxf'(x)=limΔx0x2/3[1+Δxx]2/3x2/3Δx=limΔx0x2/3[(1+Δxx)2/31]Δx=limΔx0x2/3[(1+23.Δxx+)1]Δx[ExpandingbyBinomialtheoremandrejectingthehigherpowersofΔxasΔx0]=limΔx0x2/3.23.ΔxxΔx=23x2/31=23x1/3.

Q:  

Kindly consider the following

x cos x

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Lety=x cos x(i)y+Δy=(x+Δx)cos(x+Δx)(ii)Subtractingeqn.(i)fromeqn.(ii)y+Δyy=(x+Δx)cos(x+Δx)x cos xΔy=xcos(x+Δx)+Δxcos(x+Δx)x cos xDividingbothsidesbyΔxandtakethe limit wegetlimΔx0ΔyΔx=limΔx0xcos(x+Δx)x cos x+Δxcos(x+Δx)Δxdydx=limΔx0x[cos(x+Δx) cos x]Δx+limΔx0Δxcos(x+Δx)Δx=limΔx0x[2sin(x+Δx+x)2.sin(x+Δxx)2]Δx+limΔx0cos(x+Δx)=limΔx0Δx20x[2sin(x+Δx2).sinΔx2]2×Δx2+limΔx0cos(x+Δx)Δx20Taking limits wehave=x[sinx]+cosx[?limΔx20sinΔx2Δx2=1]=xsinx+cosx

Q:  

Evaluate each of the following limits in Exercises 47 to 53.

 limy0(x+y)sec(x+y)xsec xy

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimy0(x+y)sec(x+y)xsecxy=limy0xsec(x+y)+ysec(x+y)xsecxy=limy0[xsec(x+y)xsecx]y+limy0ysec(x+y)y=limy0x[sec(x+y)secx]y+limy0sec(x+y)=limy0x[1cos(x+y)1cosx]y+limy0sec(x+y)=limy0x[cosxcos(x+y)y.cosx.cos(x+y)]+limy0sec(x+y)=limy0x[2sin(x+x+y2).sin(xxy2)y.cosx.cos(x+y)]+limy0sec(x+y)=limy0x[2sin(x+y2).sin(y2)y.cosx.cos(x+y)]+limy0sec(x+y)=limy0y20x[2sin(x+y2).sin(y2)cosx.cos(x+y).(y2).2]+limy0sec(x+y)Takingwehave=x[sinx.1cosx.cosx]+secx=xsecxtanx+secx=secx(xtanx+1)

Q:  

Kindly consider the following
limx0sin(α+β)xsin(αβ)x+sin2αxcos2βxcos2αx.x

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimx0sin(α+β)xsin(αβ)x+sin2αxcos2βxcos2αx.x=limx0[2sinαx.cosβx+sin2αx].x2sin(α+β)x.sin(αβ)x=limx0[2sinαx.cosβx+2sinαx.cosαx].x2sin(α+β)x.sin(αβ)x=limx02sinαx(cosβx+cosαx).x2sin(α+β)x.sin(αβ)x=limx0sinαx[2cos(α+β2)x.cos(αβ2)x].xsin(α+β)x.sin(αβ)x=limx0sinαx[2cos(α+β2)x.cos(αβ2)x].x2sin(α+β2)x.cos(α+β2)x.2sin(αβ2)x.cos(αβ2)x=limx0sinαx.x2sin(α+β2)xsin(αβ2)x=limx012sinαxαx.(αx).x[sin(α+β2)x(α+β2)x×(α+β2).x][sin(αβ2)x(αβ2)x×(αβ2).x]=12.αx2(α+β2)x(αβ2)x=12.[α(α+β2)(αβ2)]=12.4αα2β2=2αα2β2

Q:  

 Kindly consider the following

limxπ4tan 3xtanxcos (x+π4)



A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimxπ4tan 3xtanxcos (x+π4)=limxπ4tanx(tan 2x1)cos (x+π4)=limxπ4tanx.limxπ4[(1tan 2x)cos (x+π4)]=1×limxπ4(1tanx)(1+tanx)cos (x+π4)=limxπ4(1+tanx)×limxπ4[1tanxcos (x+π4)]=(1+1)×limxπ4(cosxsinx)cosx.cos (x+π4)=2×limxπ42(12cosx12sinx)cosx.cos (x+π4)=22×limxπ4(cosπ4.cosxsinπ4.sinx)cosx.cos (x+π4)=22×limxπ4cos (x+π4)cosx.cos (x+π4)=22×limxπ41cosxTaking limitwehave=22cosπ4=2212=2×2=4.

Q:  

Kindly consider the following
limxπ1sinx2cosx2(cosx4sinx4)

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimxπ1sinx2cosx2(cosx4sinx4)=limxπcos2x4+sin2x42sinx4.cosx4(cos2x4sin2x4)(cosx4sinx4)[?cos2x=cos2xsin2xsin2x+cos2x=1]=limxπ(cosx4sinx4)2(cosx4sinx4)(cosx4+sinx4)(cosx4sinx4)=limxπ1(cosx4+sinx4)Taking limit wehave=1cosπ4+sinπ4=112+12=122=12.



Q:  

Show that limx4?x4?x4 does not exist.

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Givenlimx4|x4|x4LHL=limx4(x4)x4=1[?|x4|=(x4)ifx<4]RHL=limx4+(x4)x4=1[?|x4|=(x4)ifx>4]LHLRHLHence,the limitdoesnotexist.

Q:  

 Let f(x)={k cosxπ2x when xπ2,3when x=π2 , and if limxπ2f(x)=f(π2) , find the value of k

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Givenf(x)={kcosxπ2x when xπ2,3when x=π2LHLf(x)=limxπ2kcosxπ2x=limh0kcos(π2h)π2(π2h)=limh0ksinhππ+2h=limh0ksinh2h=k2.1=k2[?limx0sinxx=1]RHLf(x)=limxπ2+kcosxπ2x=limh0kcos(π2+h)π2(π2+h)=limh0ksinhππ2h=limh0ksinh2h=k2[?limx0sinxx=1]Wearegiventhatlimxπ2f(x)=3So,k2=3k=6

Q:  

Let f ( x ) = { x + 2 if x1, c x 2 if x>1   , find ‘ c ’ if   l i m x 1 f ( x ) exists

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Givenf(x)={x+2if x1,cx2if x>1LHLf(x)=limx1(x+2)=limh0(1h+2)=limh0(1h)=1RHLf(x)=limx1+cx2=limh0c(1+h)2=c Since the limitsexit.LHL=RHLc=1

Maths NCERT Exemplar Solutions Class 11th Chapter Thirteen Logo

Limits and Derivatives Objective Type Questions

1. Choose the correct answer from the given four options in each of the Exercises 54 to 76:      

l i m x π s i n   x x π is

(a) 1

(b) 2

(c) -1

(d) 2

Sol:

G i v e n t h a t l i m x π s i n x x π = l i m x π s i n ( π x ) ( π x ) = 1 [ l i m x 0 s i n x x = 1 a n d π x 0 x π ] H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

2. l i m x 0 x 2 c o s x 1 c o s x  is

(a) 2

(b) 3 2
(c) 3 2
(d) 1

Sol:

G i v e n t h a t l i m x 0 x 2 c o s x 1 c o s x = l i m x 0 x 2 c o s x 2 s i n 2 x 2 = 1 [ 1 c o s x = 2 s i n 2 x 2 ] = l i m x 0 x 2 4 × 4 c o s x 2 s i n 2 x 2 = l i m x 0 x 2 0 ( x 2 ) 2 × 2 c o s x s i n 2 x 2 = l i m x 2 0 ( x 2 s i n x 2 ) 2 × 2 c o s x = 2 c o s 0 = 2 × 1 = 2 [ l i m x 0 x s i n x = 1 ] H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q&A Icon
Commonly asked questions
Q:  

Choose the correct answer from the given four options in each of the Exercises 54 to 76:      

l i m x π s i n   x x π is

(a) 1

(b) 2

(c) -1

(d) 2

Read more
A: 

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimxπsinxxπ=limxπsin (πx) (πx)=1 [? limx0sinxx=1andπx0xπ]Hence, thecorrectoptionis (c).

Q:  

limx0x2cosx1cosx is

(a) 2

(b) 3 2
(c) 3 2
(d) 1

A: 

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimx0x2cosx1cosx=limx0x2cosx2sin2x2=1[?1cosx=2sin2x2]=limx0x24×4cosx2sin2x2=limx0x20(x2)2×2cosxsin2x2=limx20(x2sinx2)2×2cosx=2cos0=2×1=2[?limx0xsinx=1]Hence,thecorrectoptionis(a).

Q:  

Kindly consider the following
limx1xm1xn1 is

(a) 1
(b) m n
(c) m n 1
(d) m 2 n 2

A: 

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimx1xm1xn1=limx1xm(1)mx1xn(1)nx1=m(1)m1n(1)n1=mn[?limxaxnanxa=n.an1]Hence,thecorrectoptionis(b).

Q:  

Kindly consider the following

 limθ01cos4θ1cos6θ is

(a) 4 9
(b) 1 2
(c) 1 2
(d)
-1

A: 

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimθ01cos4θ1cos6θ=limθ02sin22θ2sin23θ[?1cosθ=2sin2θ2]=limθ0sin22θsin23θ=limθ0[sin2θsin3θ]2=limθ02θ03θ0[sin2θ2θ×2θsin3θ3θ×3θ]2=[2θ3θ]2=(23)2=49Hence,thecorrectoptionis(a).

Q:  

Kindly consider the following
limx0cosec xcot xx is

(a) 1 2
(b)
1
(c) 1 2
(d) 1

A: 

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimx0cosec xcot xx=limx01sinxcos xsinxx=limx01cosxxsinx=limx02sin2x2x.2sinx2cosx2=limx0sinx2xcosx2=limx0tanx2x=limx0tanx22×x2=12×1=12[?limx0tanxx=1]Hence,thecorrectoptionis(c).

Q:  

Kindly consider the following

 limx0sinxx+11x is

(a) 2
(b)
0
(c)
1
(d)
-1

 

A: 
This is an objective Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimx0sinxx+11x=limx0sinxx+11x×x+1+1xx+1+1x=limx0sinx[x+1+1x]x+11+x=limx0sinx[x+1+1x]2x=12.limx0sinxx[x+1+1x]Taking limit ,weget=12×1×[0+1+10]=12×1×2=1Hence,thecorrectoptionis(c).

Q:  

Kindly consider the following

 limxπ4sec2x2tanx1 is

(a) 3
(b)
1
(c)
0
(d)
√2

 

A: 

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimxπ4sec2x2tanx1=limxπ41+tan2x2tanx1=limxπ4tan2x1tanx1=limxπ4(tanx+1)(tanx1)(tanx1)=limxπ4(tanx+1)=tanπ4+1=1+1=2.Hence,thecorrectoptionis(d).

Q:  

Kindly consider the following
limx1(x1)(2x3)2x2+x3 is

(a) 1 1 0
(b) 1 1 0
(c) 1
(d) None of these

A: 

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimx1(x1)(2x3)2x2+x3=limx1(x1)(2x3)2x2+3x2x3=limx1(x1)(2x3)x(2x+3)1(2x+3)=limx1(x1)(2x3)(2x+3)(x1)=limx1(x1)(x+1)(2x3)(2x+3)(x1)(x+1)=limx1(x1)(2x3)(x1)(x+1)(2x+3)=limx12x3(x+1)(2x+3)Taking limitswehave=2(1)3(1+1)(2×1+3)=12×5=110Hence,thecorrectoptionis(b).

Q:  

If f(x)={sin[x][x],if [x]0,0, [x]=0 , where [.] denotes the greatest integer function, then limx0f(x) is equal to

(a)   1

(b)   0

(c)   –1

(d)   None of these

Read more
A: 

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

Given,f(x)={sin[x][x],if [x]0,0, [x]=0LHL=limx0sin[x][x]=limh0sin[0h][0h]=limh0sin[h][h]=1RHL=limx0+sin[x][x]=limh0sin[0+h][0+h]=limh0sin[h][h]=1LHLRHLSo,the limitdoesnotexist.Hence,thecorrectoptionis(d).

Q:  

Kindly consider the following
l i m x 0 s i n x x is

(a)   1

(b)   –1

(c)    Does not exist

(d)    None of these

Read more
A: 

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

Given,limx0|sinx|xLHL=limx0sinxx=1[?limx0sinxx=1]RHL=limx0+sinxx=1LHLRHLSo,the limitdoesnotexist.Hence,thecorrectoptionis(c).

Q:  

Let f(x)={x21,0<x<2,2x+3,2x<3 , the quadratic equation whose roots are limx2f(x) and limx2+f(x) is

(a) x 2 6 x + 9 = 0
(b) x 2 7 x + 8 = 0
(c) x 2 1 4 x + 4 9 = 0
(d) x 2 1 0 x + 2 1 = 0

Read more
A: 

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

Given,f(x)={x21,0<x<22x+3,2x<3limx2f(x)=limx2(x21)=limh0[(2h)21]=limh0(4+h24h1)=limh0(h24h+3)=3andlimx2+f(x)=limx2+(2x+3)=limh0[2(2+h)+3]=7Therefore,thequadraticequationwhoserootsare3and7isx2(3+7)x+3×7=0i.e.,x210x+21=0.Hence,thecorrectoptionis(d).

Q:  

Kindly consider the following

 limx0tan2xx3xsinx is

(a)  2

(b)  1 2

(c)  1 2  

(d)  1 4  

Read more
A: 

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

Given,limx0tan2xx3xsinx=limx0x[tan2xx1]x[3sinxx]=limx02x0tan2x2x×213sinxx=1.2131=212=12Hence,thecorrectoptionis(b).

Q:  

 Let f(x)=x[x] ;  x

, then f(12) i

(a)  3 2

(b)   1

(c)   0

(d)   –1

Read more
A: 

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

Given,f(x)=x[x]Wehavetofirstcheckdifferentiabilityoff(x)atx=12Lf'(12)=LHD=limh0f[12h]f[12]h=limh0(12h)[12h]12+[12]h=limh012h012+0h=hh=1Lf'(12)=RHD=limh0f(12+h)f(12)h=limh0(12+h)[12+h]12+[12]h=limh012+h112+1h=hh=1LHD=RHDf'(12)=1Hence,thecorrectoptionis(b).

Q:  

Kindly consider the following

If y=x+1x , then dydx at x=1 is

(a)   1

(b)   1 2

(c)  1 2  

(d)  0

 

Read more
A: 

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

Giventhaty=x+1xdydx=12x12x3/2 (dydx)atx=1=1212=0Hence, thecorrectoptionis (d).

Q:  

Kindly consider the following

 If f(x)=x42x , then f(1) is

(a)     5 4

(b)   4 5    

(c)   1

(d)    0

Read more
A: 

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

Giventhatf(x)=x42xf'(x)=12[x.1(x4).12xx]=12[2xx+42x.x]=12[x+42(x)3/2]f'(x)atx=1=12[1+42×1]=54Hence,thecorrectoptionis(a).

Q:  

Kindly consider the following

 If y=1+1x211x2 , then dydx is

(a) 4 x ( x 2 1 ) 2
(b) 4 x x 2 1
(c) 1 x 2 4 x
(d) 4 x 2 1

A: 

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

Giventhaty=1+1x211x2y=x2+1x21dydx=(x21).2x(x2+1).2x(x21)2=2x(x21x21)(x21)2=2x(2)(x21)2=4x(x21)2Hence,thecorrectoptionis(a).

Q:  

 If y=sin x+cos xsin xcos x , then dydx at x=0 is

(a)   –2

(b)   0

(c)     1 2

(d)   Does not exist

Read more
A: 

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

Giventhaty=sin x+cos xsin xcos xdydx=(sin xcos x)(cosxsin x)(sin x+cos x)(cosx+sin x)(sin xcos x)2=(sin xcos x)2(sin x+cos x)2(sin xcos x)2=[sin2x+cos2x2sinxcosx+sin2x+cos2x+2sinxcosx](sin xcos x)2=2(sin xcos x)2(dydx)atx=0=2(sin 0cos 0)2=2(1)2=2Hence,thecorrectoptionis(a).

Q:  

If y=sin(x+9)cos x , then dydx at x=0 is

(a) cos9

(b) sin9

(c)  0

(d) 1

Read more
A: 

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

Giventhaty=sin(x+9)cos xdydx=cos x.cos (x+9)sin (x+9)(sin x)cos2x=cos xcos (x+9)+sin xsin (x+9)cos2x=cos (x+9x)cos2x=cos9cos2x(dydx)atx=0=cos9cos20=cos9(1)2=cos9.Hence,thecorrectoptionis(a).

Q:  

If f(x)=1+x+x22++x100100 , then f(1) is equal to

(a) 1 1 0 0
(b)
100
(c)
Does not exist
(d)
0

 

A: 

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

Giventhatf (x)=1+x+x22++x100100f' (x)=1+2x2++100x99100f' (1)=1+1+1++1 (100times)=100Hence, thecorrectoptionis (b).

Q:  

If f(x)=xnanxa for some constant a , then f(a) is

(a)   1

(b)   0

(c)   Does not exist

(d)  1 2

Read more
A: 

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

Giventhatf(x)=xnanxaf'(x)=(xa)(n.xn1)(xnan).1(xa)2f'(a)=(aa)(n.an1)(anan).1(aa)2So,f'(a)=00=doesnotexistHence,thecorrectoptionis(c).

Q:  

 If f(x)=x100+x99+...+x+1 , then f(1) is equal to

(a)   5050

(b)   5049

(c)   5051

(d)   5005

Read more
A: 

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

Giventhatf(x)=x100+x99++x+1f'(x)=100x99+99x98++1So,f'(1)=100+99+98++1=1002[2×100+(1001)(1)]=50[20099]=50×101=5050.Hence,thecorrectoptionis(a).

Q:  

If f(x)=1x+x2x3+...x99+x100 , then f(1) is equal to

(a)   150

(b)   –50

(c)   –150

(d)   50

Read more
A: 

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

Giventhatf(x)=1x+x2x3+x99+x100f'(x)=1+2x3x2+99x98+100x99So,f'(1)=1+23+99+100=(13599)+(2+4+6++100)=502[2×1+(501)(2)]+502[2×2+(501)(2)]=25[298]+25[4+98]=25×100+25×102=25[100+102]=25×2=50.Hence,thecorrectoptionis(d).

Q:  

Kindly consider the following

 limx0(1+x)n1x is

(a)  n

(b)   1

(c)   n

(d)   0

Read more
A: 

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimx0(1+x)n1x=limx0(1+x)n(1)n(1+x)(1)=lim1+x1(1+x)n(1)n(1+x)(1)=n(1)n1=n[?limxaxnanxa=n.an1]Hence,thecorrectoptionis(a).

Maths NCERT Exemplar Solutions Class 11th Chapter Thirteen Logo

Limits and Derivatives Fill in the blanks

1. If f ( x ) = t a n x x π  , then  l i m x π f ( x ) = _ _ _ _ _ _ _ _ _  .

Sol:

G i v e n f ( x ) = l i m x π t a n ( π x ) x π = l i m π x 0 t a n ( π x ) ( π x ) = 1 H e n c e , t h e v a l u e o f t h e f i l l e r i s 1 .

2. l i m x 0 s i n ( m x ) c o t  x/   3 = 2 then m = __________.

Sol:

G i v e n t h a t l i m x 0 ( s i n m x c o t x 3 ) = 2 l i m x 0 m x 0 s i n m x m x × m x l i m x 0 ( c o t x 3 ) = 2 1 × m x l i m x 0 1 t a n x 3 = 2 l i m x 0 m x × x 3 x 3 . t a n x 3 = 2 m x x 3 × ( 1 ) = 2 3 m = 2 m = 2 3 = 2 3 3 . H e n c e , t h e v a l u e o f t h e f i l l e r i s 2 3 3 .

Q&A Icon
Commonly asked questions
Q:  

If f(x)=tanxxπ , then limxπf(x)=_________ .

A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

Sol:

Givenf (x)=limxπtan (πx)xπ=limπx0tan (πx) (πx)=1Hence, thevalueofthefilleris1.

Q:  

limx0sin(mx)cot x/  3 = 2 then m = __________.

A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimx0(sinmxcotx3)=2limx0mx0sinmxmx×mxlimx0(cotx3)=21×mxlimx01tanx3=2limx0mx×x3x3.tanx3=2mxx3×(1)=23m=2m=23=233.Hence,thevalueofthefilleris233.

Q:  

Kindly consider the following

If y=1+x1!+x22!+x33!+... , then dydx=_________.

A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

Sol:

Giventhaty=1+x1!+x22!+x33!+dydx=0+11!+2x2!+3x23!+=1+x1!+x22!+x33!+=yHence,thevalueofthefillerisy.

Q:  

Kindly consider the following
limx3x[x]=_________ .

A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

Sol:

G i v e n l i m x 3 + x [ x ] = l i m h 0 ( 3 + h ) [ 3 + h ] = 1 H e n c e , t h e v a l u e o f t h e f i l l e r i s 1 .

qna

Maths NCERT Exemplar Solutions Class 11th Chapter Thirteen Exam

Student Forum

chatAnything you would want to ask experts?
Write here...