Class 11th

Get insights from 8k questions on Class 11th, answered by students, alumni, and experts. You may also ask and answer any question you like about Class 11th

Follow Ask Question
8k

Questions

0

Discussions

37

Active Users

0

Followers

New answer posted

6 months ago

0 Follower 5 Views

P
Payal Gupta

Contributor-Level 10

14. Given, 37 – (3x + 5) ≥9x –8 (x –3)

37– 3x–5 ≥9x –8x+ 24.

37 – 24–5 ≥9x –8x+ 3x

8 ≥4x.

84x

2 ≥x

So, x∈ (–∞, 2]

New answer posted

6 months ago

0 Follower 11 Views

P
Payal Gupta

Contributor-Level 10

13. Given 2 (2x + 3) –10 < 6 (x 2)

4x + 6 –10 < 6x 12.

4x –4 < 6x 12

12 –4 < 6x 4x

8 < 2x

82<2x24<x

So, x∈ (4, –∞)

New answer posted

6 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

12. Given, 12  (3x5+4)13 (x6)

62 (3x5+4)63 (x6)

3 (3x5+4)2 (x6)

95x+122x12

95x2x1212.

9x10x524.

x*5524*5.

x ≥–120.

(–1) x (–x)≤ ( –120)* (–1)

x ≤ 120.

So, x ∈ (–∞, 120].

New answer posted

6 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

73. Given, f (x) = xsinnx

So, f?(x) = (sinxxdxdx)(xddxsinxx)(sinxx)2

= sinxxx·n(sinx)x1ddxsinx(sinx)2x

=(sinx)nx·x(sinx)n1·cosx(sinx)2n

=(sinx)n1[sinxnx·cosx](sinx)2n

=sinxn·x·cosx(sinx)2n(n1)

=sinxnxcosx(sinx)n+1

New answer posted

6 months ago

0 Follower 5 Views

P
Payal Gupta

Contributor-Level 10

11. Given, 3 (x2)555 (2x)3

=> 3 x 3 (x – 2) ≤ 5 x 5 (2 – x)

=> 9x – 18 ≤ 50 – 25x

=> 9x + 25x ≤ 50 + 18

=> 34x ≤ 68

=> x=6834

=> x ≤ 2

So,  x (, 2]

New answer posted

6 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

72. Given, f (x) = (x + sec x) (x tan x)

So, f?(x) = (x + see x) ddx(xtanx)+(xtanx)ddx(x+secx).

=(x+secx)(dxdxddxtanx)+(xtanx)(dxdx+ddxsecx)

Let g(x) = tan x.

So, g?(x) =

 

=limh01h[tan(x+h)tanx]

=limh01h[sin(x+h)cos(x+h)sinxcosx]

=limh01h[sin(x+h)cosxsinxcos(x+h)cos(x+h)cosx]

=limh01h[sin(x+hx)cos(x+h)cosx]

=limh01cos(x+h)cosx*limh0sinhh

 

=1cos2x=sec2x . _____ (2)

And P(x) = see x.

=limh0sec(x+h)secxh

=limh01h[1cos(x+h)1cosx]

=limh01h[cosxcos(x+h)cos(x+h)cosx]

=limh01h[2sin(x+x+h2)sin(x(x+h)2)cos(x+h)cosx]

 

=sinxcos2x = tan x sec x. ____ (3)

   Putting (2) and (3) in (1) we get,

   f?(x) = (x + sec x) (1 - sec2x) + (x- tan x) (1 + tan x sec x)

New answer posted

6 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

71. Given, f (x) x1+tanx

=x1+sinxcosx

=cosx·xcosx+sinx

So,f(x)=(cosx+sinx)ddx(xcosx)(xcosx)ddx(cosx+sinx)(cosx+sinx)2

 

=(cosx+sinx)(xsinx+cosx)(x·sinxcosx+xcos2x)(cosx+sinx)2

=xcosxsinx+cos2xxsin2x+sinxcosx+xsinxcosxxcos2x(cosx+sinx)2

=cos2x+sinxcosxx(sin2x+cos2x)(cosx+csinx)2

Dividing numerator and denominator by cos2x we get,

=cos2xcos2x+sinxcosx·cosxcosxx1cos2x(cosxcosx+sinxcosx)2

=1+tanxxsec2x(1+tanx)2

New answer posted

6 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

9. x + x2+x3 < 11

6x+3x+2x6<11

(6x+3x+2x)*66<11*6

11x < 66

11x11<6611

x < 6.

So, x ∈ (–∞, 6)

New answer posted

6 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

8. 3 (2 – x) ≥ 2 (1 – x)

6 – 3x ≥ 2 – 2x

6– 2 ≥ 3x– 2x

4 ≥ x

So, x ∈ (–∞, 4]

New answer posted

6 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

 70. Given, f (x) x2cos (π4)sinx

=x2sinx*cosπ4

So, f? (x) =

 

=cosπ4 [2·xsinxx2cosxsin2x]

=xcosπ4 [2sinxxcosxsin2x].

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 679k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.