Class 11th

Get insights from 8k questions on Class 11th, answered by students, alumni, and experts. You may also ask and answer any question you like about Class 11th

Follow Ask Question
8k

Questions

0

Discussions

28

Active Users

0

Followers

New answer posted

8 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

76. Let the three numbers a  d, a, a + d be in A.P.

Then, (ad)+a+(a+d)=24

 3a = 24

 a = 8

and, (ad)*a*(a+d)=440

(ad)(a2+ad)=440

a3+a2da2dad2=440

a3ad2=440.

a(a2d2)=440

Put, a=8,8(a2d2)=440

64d2=4408

64d2=55

d2=6455

d2=9

d=±3

When d = 3, a = 8 the three number are.

 3, 8, 8 + 3 5,8,11

When d =  3, a = 8 the three numbers are.

8(3),8,8+(3)8+3,8,8311,8,5

New answer posted

8 months ago

0 Follower 8 Views

P
Payal Gupta

Contributor-Level 10

75. Let a and d be the first term and common difference of the A.P.

So,  a (m+n)+a (mn)= {a+ [ (m+n)1]d}+ {a+ [ [mn)1]d}

=a+ (m+n1)d+a+ (mn1)d

=2a+ (m+n1+mn1)d

=2a+ (2m+02)d

=2 [a+ (m1)d]

= 2 am

New answer posted

8 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

72. Given that,

an = n(n + 1)(n + 4)

= n(n2 + 4n + n + 4)

=n(n2 + 5n + 4)

= x3 + 5x2 + 4x

So, sum of terms, Sn = n3+5n2+4n

=[n(n+1)2]2+5*n(n+1)(2n+1)6+4n?(n+1)2

=n(n+1)2[n(n+1)2+5(2n+1)3+4]

=n(n+1)2[3n(n+1)+2*5(2n+1)+6*46].

=n(n+1)2[3n2+3n+20n+10+246]

=n(n+1)2[3n2+23n+346]

=n(n+1)(3n2+23n+34)12

=n(n+1)12 (3n2+6n+17n+34)

=n(n+1)12[3n2+23n+34]

New answer posted

8 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

71. The given series is 12 + (12 + 22) + (12 + 22 + 32) + …

So, nth term well be

an =12 + 22 + 32 + … + n2.

=n(x+1)(2n+1)6

=n(2x2+n+2n+1)6

=n(2n2+3n+1)6

=2n3+3n2+n6

=x33+x22+x6

So, Sn = 13n3+12n2+16i=1nn

=13n2(n+1)24+12n(n+1)(2n+1)6+16·n(n+1)2

=n(x+1)6[n(x+1)2+(2n+1)2+12]

=n(n+1)6[n2+n+2n+1+12]

=n(n+1)12[n2+5n+2n+2]

=n(n+1)(n+1)(n+2)12

=n(n+1)2(n+2)12

New answer posted

8 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

70. The given series is 3 8 + 11 + 9 14 + …

So, an= (nth term of 3, 6, 9, …) (nth term of 8, 11, 14, …)

i e, a = 3, d = 6- 3 = 3i e, a= 8, d = 11- 8 = 3

= [3 + (n- 1) 3] [8 + (n -1) 3]

= [3 + 3n- 3] [8 + 3n -3]

= 3n (3n + 5)

= 9n2 + 15n.

So, Sn = 9∑n2 + 15∑ n.

=9*n (n+1) (2n+1)6+15*n (n+1)2

=32n (n+1) (2n+1)+152n (n+1)

=3n2 (n+1) [2n+1+5]

=2n (n+1)2 [2n+6]

= 3n (n + 1) (n + 3)

New answer posted

8 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

69. The given series is 52 + 62 + 72 + … + 202

This can be rewritten as (12 +22 + 32 + 42 + 52 + 62 + 72 + … + 202) - (12 + 22 + 32 + 42)

So, sum = (12 + 22 + 32 + 42 … + 202) - (12 + 22+ 32 + 42)

=i=120n2i=14n2

=20 (20+1) (2*20+1)64 (4+1) (4*2+1)6

=20*21*4164*5*96

= 2870 30

= 2840.

New answer posted

8 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

68. The given series is 11*2+12*3+13*4+?

So, an = 1(n1,2,3)*1(n ten 2,3,4)

=1[1+(n1)1]*1[2+(n1)1]

=1(1+x1)*1(2+n1)

=1n(n+1)

=(n+1)nn(n+1)

=(n+1)n(n+1)nn(n+1)

an=1n1n+1

So. Putting n = 1, 2, 3….n.

a1 = 1112

a2 = 1213

a3 = 1314.

So, adding. L.H.S and R.H.S. up ton terms

a1 + a2 + a3 + … + an = [11+12+13+?1n][12+13+14+?·1n+1n+1]

 Sn = 1 1n+1 { equal terns cancelled out}

 Sn = n+11.n1

 Sn = nn+1

New answer posted

8 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

67. The given series is 3 * 12 + 5 * 22 + 7 * 32 + ….

So,an = (nth term of A P 3, 5, 7, .) (nth term of A P 1, 2, 3, ….)2

a = 3, d = 5 -3 = 2a = 1, d = 2 -1 = 1.

= [3 + (n- 1) 2] [1 + (n- 1) 1]2

=[3 + 2n- 2] [1 + n- 1]2

(2n + 1)(n)2

= 2n3 + n2

So, = 5n2∑n3 + ∑n2

=2·[n(n+1)2]2+[n(n+1)(2n+1)6]

=n(n+1)2[2·n(n+1)2+(2n+1)3]

=n(n+1)2[3n(n+1)+(2n+1)3]

=n(n+1)2[3n2+3n+2n+13]

=n2(n+1)·[3n2+5n+13]

n(n+1)(3n2+5n+1)6

New answer posted

8 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

66. Given series is 1* 2* 3 + 2* 3 *4 + 3* 4 *5 + … to n term

an = (nth term of A. P. 1, 2, 3, …) ´* (nth terms of A. P. 2, 3, 4) *

i e, a = 1, d = 2- 1 = 1i e, a = 2, d = 3- 2 = 1

(nth term of A. P. 3, 4, 5)

i e, a = 3, d = 3 -4 = 1.

= [1 + (n -1) 1] *[2 + (n -1):1]* [3 + (n- 1) 1]

= (1 + n -1)*(2 + n -1)*(3 + n -1)

= n (n + 1)(n + 2)

= n(n2 + 2n + n + 2)

=n3 + 2n2 + 2n.

Sn = ∑n3 + 3 ∑n2 + 2 ∑n

=[m(n+1)2]2+3n(n+1)(2n+1)6+2n(n+1)2

n(n+1)2[n(n+1)2+33(2n+1)+2]

n(n+1)2[n2+n2+2n+1+2]

=n(n+1)2[n2+n+2*2n+2*32]

=n(n+1)2[x2+n+4x+62]

=n(n+1)2*[n2+5n+6]2

=n(n+1)4[n2+2n+3n+6]

=n(n+1)4[n(n+2)+3(n+2)]

=n(n+1)(n+2)(n+3)4

New answer posted

8 months ago

0 Follower 8 Views

P
Payal Gupta

Contributor-Level 10

65. Given series is 1*2+2 *3+3* 4+4* 5+…

So, an (nth term of A.P 1, 2, 3…) (nth term of A.P. 2, 3, 4, 5…)

i e, a = 2, d = 2 -1 = 1i e, a = 2, d = 3 - 2 = 1

= [1 + (n- 1) 1] [2 + (n -1) 1]

= [1 + n- 1] [2 + n -1]

= n (n -1)

= n2-n.

Sn (sum of n terms of the series) = ∑n2 + ∑n.

Sn = n (n+1) (2n+1)6 + n (x+1)2

n (n+1)2 [2n+13+1]

n (n+1)2 [2n+1+33]

=n (n+1)2* (2n+4)3

=n (n+1)*2 (n+2)2*3

=n (n+1) (n+2)3

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 66k Colleges
  • 1.2k Exams
  • 681k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.