Inverse Trigonometric Functions

Get insights from 58 questions on Inverse Trigonometric Functions, answered by students, alumni, and experts. You may also ask and answer any question you like about Inverse Trigonometric Functions

Follow Ask Question
58

Questions

0

Discussions

4

Active Users

0

Followers

New answer posted

5 months ago

0 Follower 1 View

V
Vishal Baghel

Contributor-Level 10

Kindly go through the solution

New answer posted

5 months ago

0 Follower 1 View

V
Vishal Baghel

Contributor-Level 10

Kindly go through the solution

New answer posted

5 months ago

0 Follower 1 View

V
Vishal Baghel

Contributor-Level 10

 

Kindly go through the solution

New answer posted

5 months ago

0 Follower 1 View

A
alok kumar singh

Contributor-Level 10

Please consider the following

 

 

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

tan1xytan1xyx+y{tan1xtan1y=xy1+xy}

=tan1{(xy)(xyx+y)1+xy·(xyx+y)}

=tan1{x(x+y)(xy)·yy(x+y)y(x+y)+x(xy)y(x+y)}

=tan1(x2+xyxy+y2xy+y2x2xy)

=tan1x2+y2x2+y2

=tan11

=tan1(tanπ4)

=π4.

Option C is correct.

New answer posted

5 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

sin1(1x)2sin1x=π2(1)

(M) Let x=sinθ.Then,θ=sin1x.

Putting this in qn(1) we get

sin1(1x)2·θ=π2

sin1(1x)=π2+2θ

1x=sin(π2+2θ){sin(π2+x)=cosx}

1x=cos2θ

1x=12sin2θ·{cos2x=12sin2x}

1x=12x2·{sinθ=x}

2x2x=0x(2x1)=0

so,x=0x2x1=0x2x=1x=12.

Putting x=0 in qn (1) .

L.H.S =sin1(10)2sin10=sin1sinx20=π2=R.H.S.

x=12q(1)

L.H.S=sin1(112)2sin112=sin1(12)2sin112

=sin1122sin112

=sin112=sin1(sinπ6)=π6 

So, =0.

Option (c) is correct.

New answer posted

5 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

Given, (M)

tan1(1x1+x)=12tan1x

x=tanθ.Then θ=tan1x Bo we have,

tan1(1tanθ1+tanθ)=12tan1(tanθ)

tan1(tanπ4tanθ1+tanx4tanθ)=12θ{?tanπ4=1}.

tan1{tan(x4θ)}=θ2{?tanxtany1+tanxtan=tan(xy)

π4θ=θ2

θ2+θ=x4

3θ2=π4

θ=π4*23=π6

New answer posted

5 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

Given,

(M)2tan1(cosx)=tan1(2cosecx)

tan12cosx1cos2x=tan12sinx {using.tan12x=2x1x2}

2cosxsin2x=2sinx {?1cos2x=sin2x1=sin2x+cos2x}

cosxsinx=1

cotx=cotx4

x=π4.

New answer posted

5 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

LH.S =(tan115+tan117)+(tan113+tan118)

=tan1[15+17115·17]+tan1[13+18113,18]{?usingtan1x+tan1yx+y1xy,xy<1}

tan1[7+57*57*517*5]+tan1[8+35*38*318*3]

=tan1(12351)+tan1(11241)=tan11234+tan11123

=tan1617+tan11123

=tan1(617+1231617*323)=tan1(6*23+11*1117*23?7*236*1117*23)

=tan1138+18739166=tan1325325=tan11

=tan1(tan14)

=x4=R.H.S

New answer posted

5 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

Let sin1513=x and cos135=y.

Then, sinx=513andcos=35

So, tanx=sinxcosxandtany=sinycosy

=5/312/1=4/53/5.

=512=43.

Using tan(x+y)=lanx+lany1tanxtany.

tan (sin1513+cos135)=512+431512*43= 5*3+4*1212*312*35*412*3

=15+483620=6316

sin1513+cos135=tan16316.

Hence proved.

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 682k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.