Maths Integrals

Get insights from 376 questions on Maths Integrals, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths Integrals

Follow Ask Question
376

Questions

0

Discussions

5

Active Users

0

Followers

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let, I=ex (1x1x2)dxex [f (x)+f (x)]dxWhere, f (x)=1xf (x)=dxdx=1x2=1x2

So, I = exf (x) + C

=ex1x+ c=exx+ c

New answer posted

4 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

Let,=ex(1+sinx1+cosx)dx.,

=ex1+2sinx2cosx22cos2x2dx. {∴ sin 2x = 2sin x cos x. cos 2x = cos- 2x- 1 1 + cos 2x = 2cos2x.

=ex[12cos2x2+2sinx2cosx22cos2x2]dx]=ex[12sec2x2+cosxsinx2cosx2]dx

=ex[tanx2+12sin2x2]dx is in the form

  ex [f(x) + f(x)].dx where

f(x)=tanx2f(x)=ddrtanx2=sec2x2ddx(x2)=12sec2x2=exf(x)+c=extanx2+ C

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let,I=xex(x+1)2dx=x+11(x+1)2exdx

=ex[(x+1)(x+1)2+(1)(x+1)2]dx. is of the form

ex [f(x) + f(x)] dx

Where,f(x)=x+1(x+1)2=1x+1So,f(x)=d(x+1)1dx=(1)(x+1)2.xex(1+x2)dx=ex[1x+1]+ C

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

∴f (x) = sin x

f (x) = cos x.

ex [f (x) + f (x)] dx = exf (x) + C

ex (sinx+cosx)dx=exsinx+c

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

(x2+1)logxdx=logx(x2+1)dx(x2+1)dxddxlogx(x2+1)dxdx=logx[x33+x]1x*[x33+x]dx=[x33+x]logx[x23+1]dx=[x33+x]logxx33*3x+ C=[x33+x]logxx39x+ C

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

x(logx)2=(logx)2xdxddx(logx)2xdxdx=(logx)2*x222logx*12*x22dx=x22(logx)2logxxdx

=x22(logx)2[logxxdxddxlogxxdxdx]=x22(logx)2x22logx+x2dx=x22(logx)2x22logx+x24+ C

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

tan1xdx= (tan1x)1dx.=tan1xdxddxtan1xdxdx=xtan1x11+x2xdx.=xtan1x122x1+x2dx=xtan1x12log|1+x2|+ C

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

xsec2xdx=xsec2xdxdxdxsec2xdxdx.=xtanxtanxdx=xtanx (log|cosx|)+ C=xtanx+log|cosx|+ C

New answer posted

4 months ago

0 Follower 1 View

V
Vishal Baghel

Contributor-Level 10

Kindly go through the solution

 

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

LetI=?(sin1x)2dx

Putting sin-1x =θ=> x = sinθ, dx = cosθdθ.

So,I=?θ2cosθdθ=θ2?cosθdθ?ddθθ2?cosθdθdθ. 

=θ2sinθ?2θsinθdθ.=θ2sinθ2?θsinθdθ. 

=θ2sinθ2[θ?sinθdθ?dθdθ?sinθdθdθ]

=θ2sinθ2[θ(cosθ)?(cosθ)dθ]

=θ2sinθ+2θcosθ2sinθ+C

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 682k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.