Maths Integrals

Get insights from 376 questions on Maths Integrals, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths Integrals

Follow Ask Question
376

Questions

0

Discussions

5

Active Users

0

Followers

New answer posted

4 weeks ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

( s i n x c o s x ) s i n 2 x t a n x ( s i n 3 x + c o s 3 x ) d x

( s i n x c o s x ) s i n x c o s x s i n 3 x + c o s 3 x d x , put sin3x + cos3x = t(3 sin2x*cosx – 3cos2xsinx) dx = dt

-> 1 3 d t t

= l n t 3 + c

= l n | s i n 3 x + c o s 3 x | 3 + c

             

           

New answer posted

4 weeks ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

l i m h 0 ( π 2 h ) ( π 2 ) 3 c o s ( t 1 / 3 ) d t h 2

= l i m h 0 0 + 3 ( π 2 h ) 2 c o s ( π 2 h ) 2 h

= l i m h 0 3 ( π 2 h ) 2 s i n h 2 h

= 3 π 2 8

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

π 2 π 2 8 2 c o s x ( 1 + e s i n x ) ( 1 + s i n 4 x ) dx

= 0 π 2 { ( 8 2 c o s x ( 1 + e s i n x ) ( 1 + s i n 4 x ) + 8 2 c o s x ( 1 + e s i n x ) ( 1 + s i n 4 x ) ) } d x            

= 8 2 0 π 2 c o s x 1 + s i n 4 x d x            

Let sin x = t

I = 8 2 0 1 d t 1 + t 4            

= 4 2 0 1 ( 1 + 1 t 2 ) ( 1 1 t 2 ) t 2 + 1 t 2 d t       

= 4 2 0 1 ( 1 + 1 t 2 ) d t ( t 1 t ) 2 + 2 4 2 0 1 ( 1 1 t 2 ) d t ( t + 1 t ) 2 2            

= 4 2 1 2 ( t a n 1 t 1 t 2 ) 0 1 4 2 1 2 2 [ l o g | t + 1 t 2 t + 1 t + 2 | ] 0 1         

= 2 π 2 l o g | 2 2 2 + 2 |        

= 2 π + 2 l o g ( 3 + 2 2 )           

a = b = 2

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

I = 0 π / 4 x d x s i n 4 ( 2 x ) + c o s 4 ( 2 x )

           Let 2x = t then   d x = 1 2 d t

I = t 2 1 2 d t s i n 4 t + c o s 4 t

= 1 4 0 π / 2 t d t s i n 4 t + c o s 4 t d t            

I = 1 4 0 π / 2 ( π 2 t ) d t s i n 4 t + c o s 4 t d t

2 I = 1 4 0 π / 2 π 2 d t s i n 4 t + c o s 4 t

2 I = 1 4 0 π / 2 π 2 d t s i n 4 t + c o s 4 t

2 I = π 8 0 π / 2 s i n 4 t d t t a n 4 t + 1            

Let tan t = y then

2 I = π 8 0 ( 1 + y 2 ) d y 1 + y 4             

= π 8 0 1 + 1 y 2 y 2 + 1 y 2 2 + 2 d y

= π 8 0 ( 1 + 1 y 2 ) d y 2 + ( y 1 y ) 2             

Let y1y=u  

2 I = π 8 d u 2 + u 2

= π 8 2 [ t a n 1 4 2 ]                  

I = π 2 1 6 2

New answer posted

a month ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

a a ( | x | + | x 2 | ) d x = 2 2 , a > 2

a 0 ( 2 x + 2 ) d x + 0 2 ( x x + 2 ) d x + 2 a ( 2 x 2 ) d x = 2 2

2 a 2 + 2 = 2 0 a 2 = 9 a = 3

3 3 ( x + [ x ] ) d x = 3 3 ( 2 x { x } ) d x = 3 3 2 x d x + 6 0 1 x d x = 6 . x 2 2 | 0 1 = 3

New answer posted

a month ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let sin = t

s i n θ ( 2 s i n θ . c o s θ ) ( s i n 6 θ + s i n 4 θ + s i n 2 θ ) 2 s i n 4 θ + 3 s i n 2 θ + 6 2 s i n 2 θ  d

sin = t

cos . d = dt

u 1 / 2 1 2 d u = u 3 / 2 1 8 + C = ( 2 t 6 + 3 t 4 + 6 t 2 ) 3 / 2 1 8 + C = ( 2 s i n 6 θ + 3 s i n 4 θ + 6 s i n 2 θ ) 3 / 2 1 8 + C

New answer posted

a month ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

l = 1 3 [ x 2 2 x + 1 3 ] d x = 1 3 [ ( x 1 ) 2 3 ] d x = 1 3 [ ( x 1 ) 2 ] d x 3 1 3 d x .(A)

l 1 = 1 3 [ ( x 1 ) 2 ] d x P u t ( x 1 ) 2 = t

l 1 = 1 2 [ 0 0 1 d t t 1 2 d t t + 2 2 3 d t t + 3 3 4 d t t ] = 1 2 { | t 1 2 + 1 1 2 + 1 | 1 2 | + 2 t 1 2 + 1 1 2 + 1 | 2 3 + 3 t 1 2 + 1 1 2 + 1 ] 3 4 }

Hence from (A)

= 5 2 3 3 6 = 1 2 3

2nd method           


1 3 [ ( x 1 ) 2 ] d x 6 . . . . . . . . . . . . . . ( A )

From (A), l = 5 2 3 6 = 1 2 3

New answer posted

a month ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

    l = 0 2 f ( x ) d x = [ x f ( x ) ] 0 2 0 2 x f ' ( x ) d x = 2 e 2 0 2 x f ' ( x ) d x    .(A)

Put l 1 = 0 2 x f ' ( x ) d x               .(i)

Using properties a b f ( x ) d x = a b f ( a + b x ) d x

l 1 = 0 2 ( 2 x ) f ' ( 2 x ) d x = 0 2 ( 2 x ) f ' ( x ) d x .(ii)

Adding (i) and (ii) we get

2 l 1 = 2 0 2 f ' ( x ) d x l 1 = [ f ( x ) ] 0 2

f(2) – f(0) = e2 – 1

From (A) l = 2e2 – e2 + 1 = e2 + 1

New answer posted

a month ago

0 Follower 6 Views

A
alok kumar singh

Contributor-Level 10

Given l m , n = 0 1 x m 1 ( 1 x ) n 1 d x . . . . . . . . . . . . ( i )  

put 1 - x = t { x = 0 , t = 1 x = 1 , t = 0  

dx = -dt

From (i) l m , n = 1 0 ( 1 t ) m 1 . t n 1 ( d t )  

l m , n = 0 1 t n 1 ( 1 t ) m 1 d t = 0 1 x n 1 ( 1 x ) m 1 d x . . . . . . . . . . ( i i )                              

(i)   l m , n = 0 1 ( 1 + y ) m 1 ( 1 1 1 + y ) n 1 ( d y ( 1 + y ) 2 ) = 0 y n 1 ( 1 + y ) m + n d y . . . . . . . . . . ( i i i )

Similarly by (ii) l m , n = 0 y m 1 ( y + 1 ) m + n d y . . . . . . . . . . ( i v )  

Adding (iii) & (iv) 2 l m , n = 0 y n 1 + y m + 1 ( y + 1 ) m + n  

Putting   1 z { y = 1 , z = 1 y = , z = 0 d y = 1 z 2 d z  

Hence  l m , n = 0 1 x m 1 + x n 1 ( 1 + x ) m + n dx = a lm, n

-> a = 1

New answer posted

a month ago

0 Follower 2 Views

R
Raj Pandey

Contributor-Level 9

l = 4 8 π 4 0 π [ ( π 2 x ) 3 3 π 2 4 ( π 2 x ) + π 3 4 ] s i n x d x 1 + c o s 2 x

Using a b f ( x ) d x = a b f ( a + b x ) d x

we get l = 4 8 π 4 0 π [ ( π 2 x ) 3 + 3 π 2 4 ( π 2 x ) + π 3 4 ] s i n x d x 1 + c o s 2 x

Adding these two equations, we get

l = 1 2 π [ t a n 1 ( c o s x ) ] 0 π = 1 2 π . π 2 = 6

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 682k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.