Matrices

Get insights from 180 questions on Matrices, answered by students, alumni, and experts. You may also ask and answer any question you like about Matrices

Follow Ask Question
180

Questions

0

Discussions

5

Active Users

0

Followers

New answer posted

a month ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

x + 2y + z = 2
αx + 3y – z = α
–αx + y + 2z = –α

Δ = | (1, 2, 1), (α, 3, -1), (-α, 1, 2) | = 1 (6+1) – 2 (2α–α) + 1 (α+3α) = 7+2α
α = –7/2

New answer posted

2 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

Given the matrix P = [2, -1], [5, -3].
The characteristic equation is det (P - λI) = 0, which is (2-λ) (-3-λ) - (-1) (5) = 0.
This simplifies to λ² + λ - 1 = 0.
By the Cayley-Hamilton theorem, the matrix P satisfies this equation: P² + P - I = 0, so P² = I - P.
To find P³: P³ = P * P² = P (I-P) = P - P² = P - (I-P) = 2P - I.
The problem asks for N=6, likely related to a higher power P? Continuing the pattern:
P? = 2P² - P = 2 (I-P) - P = 2I - 3P.
P? = 2P - 3P² = 2P - 3 (I-P) = 5P - 3I.
P? = 5P² - 3P = 5 (I-P) - 3P = 5I - 8P.
The solution N=6 must relate to a different question not fully transcribed, for example, if P^N = 5I - 8P.

...more

New answer posted

2 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

1 = (2-1)¹ (The n is likely 1).
3? = (7-4)³ (This seems to be a pattern matching (a-b)^c).
4²? = (12-8)? ! = 4²?
The blank space must be (5-3)² = 2² = 4.

New answer posted

2 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

Evaluate the integral:
∫ (2x-1)cos (√ (4x²-4x+6) / √ (4x²-4x+6) dx
∫ (2x-1)cos (√ (2x-1)²+5) / √ (2x-1)²+5) dx

Let (2x-1)² + 5 = t².
Differentiating both sides:
2 (2x-1)*2 dx = 2t dt
2 (2x-1) dx = t dt
(2x-1) dx = (t/2) dt

Substitute into the integral:
∫ cos (t)/t * (t/2) dt
= 1/2 ∫ cos (t) dt
= 1/2 sin (t) + C
= 1/2 sin (√ (2x-1)²+5) + C
= 1/2 sin (√ (4x²-4x+6) + C

New answer posted

2 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

Given the equations:
t? (A + 2B) = -1 which expands to t? (A) + 2t? (B) = -1 . (I)
t? (2A - B) = 3 which expands to 2t? (A) - t? (B) = 3 . (II)

Solving equations (I) and (II) simultaneously, we get:
t? (A) = 1
t? (B) = -1

Therefore, t? (A) - t? (B) = 1 - (-1) = 2.

New answer posted

2 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The system of equations has no solution if the determinant of the coefficient matrix is zero.
Δ = |k 1|
|1 k 1|
|1 k|
Δ = k (k² - 1) - 1 (k - 1) + 1 (1 - k) = 0
Δ = k³ - k - k + 1 + 1 - k = 0
⇒ k³ - 3k + 2 = 0 ⇒ (k - 1)² (k + 2) = 0
∴ k = -2, 1
If k = 1 then all the equations are identical (infinite solutions). Hence k = -2 for no solution.

New question posted

2 months ago

0 Follower 2 Views

New answer posted

2 months ago

0 Follower 6 Views

V
Vishal Baghel

Contributor-Level 10

A = [ x 1 ]
[ 1 0 ]
A² = [ x 1 ] [ x 1 ] = [ x²+1 x ]
[ 1 0 ] [ 1 0 ] [ x 1 ]
A? = [ x²+1 x ] [ x²+1 x ]
[ x 1 ] [ x 1 ]
= [ (x²+1)²+x² x (x²+1)+x ]
[ x (x²+1)+x²+1 ]
a? = (x² + 1)² + x² = 109
⇒ x = ±3
a? = x² + 1 = 10

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 682k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.