Ncert Solutions Maths class 12th

Get insights from 2.5k questions on Ncert Solutions Maths class 12th, answered by students, alumni, and experts. You may also ask and answer any question you like about Ncert Solutions Maths class 12th

Follow Ask Question
2.5k

Questions

0

Discussions

16

Active Users

65

Followers

New answer posted

a month ago

0 Follower 5 Views

A
alok kumar singh

Contributor-Level 10

l = 1 3 [ x 2 2 x + 1 3 ] d x = 1 3 [ ( x 1 ) 2 3 ] d x = 1 3 [ ( x 1 ) 2 ] d x 3 1 3 d x  .(A)

l 1 = 1 3 [ ( x 1 ) 2 ] d x P u t ( x 1 ) 2 = t

l 1 = 1 2 [ 0 0 1 d t t 1 2 d t t + 2 2 3 d t t + 3 3 4 d t t ] = 1 2 { | t 1 2 + 1 1 2 + 1 | 1 2 | + 2 t 1 2 + 1 1 2 + 1 | 2 3 + 3 t 1 2 + 1 1 2 + 1 ] 3 4 }      = 5 2 3  

Hence from (A)

= 5 2 3 3 6 = 1 2 3

2nd method       

1 3 [ ( x 1 ) 2 ] d x 6 . . . . . . . . . . . . . . ( A )

From (A), l=5236=123  

 

 

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

l = 0 2 f ( x ) d x = [ x f ( x ) ] 0 2 0 2 x f ' ( x ) d x = 2 e 2 0 2 x f ' ( x ) d x        .(A)

Put   l 1 = 0 2 x f ' ( x ) d x            .(i)

Using properties a b f ( x ) d x = a b f ( a + b x ) d x  

l 1 = 0 2 ( 2 x ) f ' ( 2 x ) d x = 0 2 ( 2 x ) f ' ( x ) d x    .(ii)

Adding (i) and (ii) we get

  2 l 1 = 2 0 2 f ' ( x ) d x l 1 = [ f ( x ) ] 0 2         

f(2) – f(0) = e2 – 1

From (A) l = 2e2 – e2 + 1 = e2 + 1

New answer posted

a month ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

Let f(x) = x6 + ax5 + bx4 + ax3 + dx2 + ex + f

l i m x 0 f ( x ) x 3 = 1                   Non zero finite

So, d = e = f = 0

f(x)  = x6 + ax5 + bx4 + cx3

l i m x 0 f ( x ) x 3 = 1          Non zero finite

f'(x) = 6 x 5 + 5 a x 4 + 4 b x 3 + 3 x 2  

f'(1) = 0

6 + 5a + 4b + 3 = 0

5a + 4b = - 9 .(i)

f'(-1) = 0

-6 + 5a – 4b + 3 = 0 .(ii)

Solving (i) and (ii)

a  -3/5, b = -3/2

f ( x ) = x 6 + ( 3 5 ) x 5 + ( 3 2 ) x 4 + x 3

5 . f ( 2 ) = 1 4 4  

New answer posted

a month ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

a = i ^ + 2 j ^ k ^ , b = i ^ j ^ , c = i ^ j ^ k ^      

-> r * a = c * a

r = c + λ a

Now, 0 = b . c + λ a . b a s r . b = 0  

λ = b . c a . b = 2        

r . a = a . c + 2 a 2 = 1 2           

New answer posted

a month ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

8 * 3 * 32 = 24 * 81

Total = n (A) = 93 + 24 * 81 = 81 * 33

In favourable events, the last digit of the number must be either 2 or 7.

Favourable cases = 8 * 9 2 + 9 2 + 8 * 9 * 2 = 8 7 3 , probability = 8 7 3 8 1 * 3 3 = 9 7 2 9 7

New answer posted

a month ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

Critical point of function are x = 1 2 , 1 and -2 but x = -2 is making zero .


n o n d i f f e r e n t i a b l e a t x = 1 2 , 1      

New answer posted

a month ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

P {a person chosen from the group has chest disorder}

=160400*0.35+100400*0.20+140400*0.10

P(Personissmoker&nonvegetarianPersonhaschestdisorder)

=160400*0.35160400*0.35+100400*0.20+140400*0.10

=40*0.740*0.7+25*0.4+35*0.2=2323+10+7=2845

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

ax2 + bx + c = 0

D = b2 – 4ac

D = 0

b2 – 4ac = 0

b2 = 4ac

(i) AC = 1, b = 2 (1, 2, 1) is one way

(ii) AC = 4, b = 4

a = 4 c = 1 a = 2 c = 2 a = 1 c = 4 } 3 w a y s  

(iii) AC = 9, b = 6, a = 3, c = 3 is one way

1 + 3 + 1 = 5 way

Required probability =  5 2 1 6   

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

Let sinθ= t s i n θ ( 2 s i n θ . c o s θ ) ( s i n 6 θ + s i n 4 θ + s i n 2 θ ) 2 s i n 4 θ + 3 s i n 2 θ + 6 2 s i n 2 θ

sinθ = t

cos θ. dθ = dt

u 1 / 2 1 2 d u = u 3 / 2 1 8 + C = ( 2 t 6 + 3 t 4 + 6 t 2 ) 3 / 2 1 8 + C = ( 2 s i n 6 θ + 3 s i n 4 θ + 6 s i n 2 θ ) 3 / 2 1 8 + C

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

x = n = 0 c o s 2 n θ = c o s 0 θ + c o s 2 θ + c o s 4 θ + . . . . . = 1 + c o s 2 θ + c o s 4 θ + . . . . .  

a = 1, r = cos2 θ

x = S = a 1 r = 1 1 c o s 2 θ = 1 s i n 2 θ           

Similarly, y = 1 c o s 2 θ 1 y = c o s 2 θ  

z = x y x y 1 x y z z = x y . . . . . . . . . . . ( i )           

Also, 1 x + 1 y = 1 x + y = x y . . . . . . . . . . ( i i )  

 (i) & (ii) ->xyz = xy + z -> (x + y) z = xy + z

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.