Ncert Solutions Maths class 12th

Get insights from 2.5k questions on Ncert Solutions Maths class 12th, answered by students, alumni, and experts. You may also ask and answer any question you like about Ncert Solutions Maths class 12th

Follow Ask Question
2.5k

Questions

0

Discussions

16

Active Users

65

Followers

New answer posted

a month ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

3, 4, 5, 5

In remaining six places you have to arrange

3, 4, 5,5

So no. of ways = 6 ! 2 ! 2 ! 2 !

Total no. of seven digits nos. = 7 ! 2 ! 3 ! 2 ! * 1

Hence Req. prob. 6 ! 2 ! 2 ! 2 ! 7 ! 2 ! 3 ! 2 ! = 6 ! 3 ! 2 ! 7 ! = 3 7

New answer posted

a month ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

a 1 = x i ^ j ^ + k ^ & a 2 = i ^ + y j ^ + z k ^

given a 1 & a 2 are collinear then a 1 = λ a 2

( x i ^ j ^ + k ^ ) = λ ( i ^ + y j ^ + z k ^ )       

Since i ^ , j ^ & k ^ are not collinear so

S o x i ^ + y j ^ + z k ^ = λ i ^ 1 λ j ^ + 1 λ k ^     

Hence possible unit vector parallel to it be 1 3 ( i ^ j ^ + k ^ ) for λ =

New answer posted

a month ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Given f(x) =   e x e t f ( t ) d t + e x . . . . . . . . . . ( i )

using Leibniz rule then

f'(x) = exf(x) + ex

d y d x = e x y + e x w h e r e y = f ( x ) t h e n d y d x = f ' ( x )            

P = -ex, Q = ex

Solution be y. (I.F.) =  Q ( I . F . ) d x + c

I. f. =  e e x d x = e e x

y . ( e e x ) = e x . e e x d x + c   

y . e e x = d t + c = t + c = e e x + c . . . . . . . . . . ( i i )

Put x = 0 , in (i) f (0) = 1

F r o m ( i i ) , 1 e = 1 e + c g i v e n c = 2 e   

Hence f(x) = 2. e ( e x 1 ) 1

 

New answer posted

a month ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Given l m , n = 0 1 x m 1 ( 1 x ) n 1 d x . . . . . . . . . . . . ( i )  

put 1 - x = t { x = 0 , t = 1 x = 1 , t = 0

dx = -dt

From (i) l m , n = 1 0 ( 1 t ) m 1 . t n 1 ( d t )

l m , n = 0 1 t n 1 ( 1 t ) m 1 d t = 0 1 x n 1 ( 1 x ) m 1 d x . . . . . . . . . . ( i i )    

P u t x = 1 1 + y i n ( i ) t h e n d x = 1 ( 1 + y ) 2 d y                          

(i)  l m , n = 0 1 ( 1 + y ) m 1 ( 1 1 1 + y ) n 1 ( d y ( 1 + y ) 2 ) = 0 y n 1 ( 1 + y ) m + n d y . . . . . . . . . . ( i i i )

Similarly by (ii) l m , n = 0 y m 1 ( y + 1 ) m + n d y . . . . . . . . . . ( i v )

Adding (iii) & (iv) 2 l m , n = 0 y n 1 + y m + 1 ( y + 1 ) m + n

Putting  1 z { y = 1 , z = 1 y = , z = 0 d y = 1 z 2 d z  

Hence l m , n = 0 1 x m 1 + x n 1 ( 1 + x ) m + n dx = α lm, n

=> α = 1

New answer posted

a month ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

Given f ( x ) = 2 x 5 + 5 x 4 + 1 0 x 3 + 1 0 x 2 + 1 0 x + 1 0

f ( 1 ) = 3 > 0 & f ( 2 ) = 3 4 < 0

So at least one root will lie in (2, 1)

now f ' ( x ) = 1 0 x 4 + 2 0 x 3 + 3 0 x 2 + 2 0 x + 1 0

= 1 0 [ x 4 + 2 x 3 + 3 x 2 + 2 x + 1 ]

= 1 0 x 2 ( x + 1 x + 1 ) 2 > 0 x R

So, f (x) be purely increasing function so exactly one root of f (x) that will lie in (-2, 1). Hence |a| = 2

New answer posted

a month ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

G i v e n | z + 5 | 4 . . . . . . . . . . ( i )

->Represent a circle ( x + 5 ) 2 + y 2 1 6

= z ( 1 + i ) + z ¯ ( 1 i ) 1 0 . . . . . . . . . . ( i i )

->Represent a line X – y 5

So max |z + 1|2 = AQ2

= ( 4 2 2 ) 2 + 8

= 3 2 + 1 6 2 = α + β 2  

Hence α + β) = 48

New answer posted

a month ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

18 = 32 * 2

For G.C.D to be 3. no. of four digits should be only multiple of 3, but not multiple of 9 & also should not be even.

As we know no. of the form                          9 k -> 1000

9 k + 1 -> 1000

9 k + 2 -> 1000

9 k + 3 -> 1000  -> Total no. = 2000

9 k + 4 -> 1000

9 k + 5 -> 1000

9 k + 6 ->1000

9 k + 7 -> 1000

9 k + 8 -> 1000

In which half will be even & half be odd so Required no. = 1000

New answer posted

a month ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Given curves x 2 9 + y 4 4 = 1 . . . . . . . . . ( i )

&     x 2 + y 2 = 3 1 4 . . . . . . . . . . . ( i i )      

Equation of any tangent to (i) be y = mx +  9 m 2 + 4 . . . . . . . . . . . . ( i i i )

For common tangent (iii) also should be tangent to (ii) so by condition of common tangency

9 m 2 + 4 = 3 1 4 ( 1 + m 2 )

OR 36m2 + 16 = 31 + 31m2

=>m2 = 3

New answer posted

a month ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

0π|sin2x|dx

=20π/2sin2xdx =2  [cos2x2]0π/2 = 2 ( 1 2 ( 1 2 ) ) = 2

New answer posted

a month ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

3030C0+2930C1+.....+230C28+1.30C29=n.2m

n=15, m=0

n+m=15+30=45

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.