Integrals

Get insights from 366 questions on Integrals, answered by students, alumni, and experts. You may also ask and answer any question you like about Integrals

Follow Ask Question
366

Questions

0

Discussions

5

Active Users

0

Followers

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

tan4x=tan2xtan2x

=(sec2x1)tan2x

=sec2x.tan2xtan2x

=sec2x.tan2x(sec2x1)

=sec2x.tan2xsec2x+1

 I=tan4xdx=sec2x.tan2xdxsec2xdx+1.dx

=sec2x.tan2xdxtanπ+x+C(i)

LetI=sec2x.tan2xdx

Put tanx=t

sec2xdx=dt

I1=sec2x.tan2xdx

=t2dt

=t33=tan3x

3I=tan4xdx

=13tan3xtanx+x+ C

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

tan32xsec 2x= tan22xtan 2xsec 2x


 {sec2(2x)1} tan 2xsec 2x

= sec22xtan 2xsec 2x

tan 2xsec 2x

I =tan32x.sec 2x dx

=tan22xtan 2xsec 2x dxtan2x.sec 2x dx=tan22xtan2xsec2xdxsec2x2+Put sec 2x=t

2sec 2xtan 2x dx=dt

I=tan32x.sec 2x dx=12t2dtsec2x2+ C=t36sec2x2+ C=(sec2x)36sec2x2+ C

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

cosxsinx1+sin2x=cosxsinx(sin2x+cos2x)+2sinxcosx=cosxsinx(sinx+cosx)2[?sin2+cos2=1&sin2x=2sinxcosx]I=cosxsinx1+sin2xdx=cosxsinx(sinx+cosx)2dxPut sinx+ cosx=t

(cosxsinx)dx=dt=dtt2=t2dt=t1+=1t+ c=1sinx+cosx+ c

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

=4cos(x+2)cos(x2)=2[cos(x+2+x2)+cos(x2x2)= 2[cos(x) + cos]=2cosx+2cos=cos2xcos2cosxcosdx=(2cosx+2cos)dx

= 2[sinx+xcos] + C

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

2x1+cosx= (2sinx2cosx2)22cos2x2

=4sin2x2cos2x22cos2x2=2sin2x22=1cosx=sin2x1+cosxdx= (1cosx)dx=xsinx+C

New answer posted

4 months ago

0 Follower 1 View

V
Vishal Baghel

Contributor-Level 10

Kindly go through the solution

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

sin4x=sin2x.sin2x=(1cos2x2)(1cos2x2)=14(1cos2x)2=14[1+cos22x2cos2x]=14[1+(1+cos4x2)2cos2x]=14[1+12+12cos4x2cos2x]=14[32+12cos4x2cos2x]

=sin4xdx=14[32+12cos4x2cos2x]dx=14[32+12(sin4x4)2sin2x2]+ C=18[3x+sin4x42sin2x]+ C=3x814sin2x+132sin4x+ C

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

cosx1+cosx=cos2x2sin2x22cos2x2=12[1tan2x2]=cosx1+cosxdx=12(1tan2x2)dx=12(1sec2x2+1)dx=12(2sec2x2)dx=12[2xtanx212]+ C=xtanx2+ C

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

1cosx1+cosx=2sin2x22cos2x2=tan2x2=sec2x21=1cosx1+cosxdx= (sec2x21)dx= [tanx212]+ C=2tanx2+ C

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

sinAsinB=12 {cos (A+B)cos (A−B)}=sin4xsin8xdx=12 {cos (4x8x)cos (4x+8x)}dx=12cos (4x)cos12xdx=12 (cos4xcos12x)dx=12 [sin4x4sin12x12]+ C

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.