Maths Matrices

Get insights from 118 questions on Maths Matrices, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths Matrices

Follow Ask Question
118

Questions

0

Discussions

5

Active Users

7

Followers

New answer posted

4 months ago

0 Follower 7 Views

P
Payal Gupta

Contributor-Level 10

1+α2=1α=0

&α2+β2=1β2=±1

&ααβ=0α (1β)=0α=0orβ=1

= 0 & = 1 or = 0 & = 1

4 + 4 = 1

New answer posted

4 months ago

0 Follower 5 Views

A
alok kumar singh

Contributor-Level 10

A = [ x y z y z x z x y ] , | A | = 3 x y z ( x 3 + y 3 + z 3 ) = ( x + y + z ) [ ( x + y + z ) 2 3 ( x y + y z + z x ) ]

A2 = l

A. A' = l    (as A = A')

x 2 + y 2 + z 2 = 1 a n d x y + y z + z x = 0         

x 3 + y 3 + z 3 = 3 * 2 + 1 * ( 1 0 ) = 7             

New answer posted

4 months ago

0 Follower 6 Views

A
alok kumar singh

Contributor-Level 10

[ 0 t a n θ 2 t a n θ 2 0 ] , I 2 + A = [ 1 t a n θ 2 t a n θ 2 1 ] , I 2 A = [ 1 t a n θ 2 t a n θ 2 1 ]           

  ( I 2 + A ) ( I 2 A ) 1 = [ a b b a ]          

  a 2 + b 2 = | ( I 2 + A ) ( I 2 A ) 1 | = s e c 2 θ 2 * c o s 2 θ 2 = 1          

1 3 ( a 2 + b 2 ) = 1 3 * 1 = 1 3

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

2x + 3y + 2z = 9 . (i)

3x + 2y + 2z = 9     . (ii)

x – y + 4z = 8          . (iii)

(ii) – (i) ⇒ x = y

Then (iii) ⇒ z = 2

(i) ⇒ 5x + 4 = 9 ⇒ (x = 1, y = 1, z = 2) unique solution

New answer posted

4 months ago

0 Follower 2 Views

R
Raj Pandey

Contributor-Level 9

x + 2y + z = 2

α x + 3 y z = α

α x + y + 2 z = α

Δ = | 1 2 1 α 3 1 α 1 2 | = 1 ( 6 + 1 ) 2 ( 2 α α ) + 1 ( α + 3 α ) = 7 + 2 a

α = 7 2

 

 

 

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

  A = [ a i j ] 3 * 3 = [ a 1 1 a 1 2 a 1 3 a 2 1 a 2 2 a 2 3 a 3 1 a 3 2 a 3 3 ]             

a i 1 + a i 2 + a i 3 = 1 ; i = 1 , 2 , 3            

L e t X = [ 1 1 1 ] t h e m  

given [ a 1 1 a 1 2 a 1 3 a 2 1 a 2 2 a 2 3 a 3 1 a 3 2 a 3 3 ] [ 1 1 1 ] = [ 1 1 1 ]  

->AX = X .(i)

replace x by A x we have

A (AX) = AX

->A2X = AX = X .(ii)

Again replace X by AX

A3X = AX = X.

As  X = [ 1 1 1 ] , Sum of all entries in A3 = sum of entries in X = 1 +1 + 1 = 3

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

  l o g 9 1 2 x + l o g 9 1 3 x + l o g 9 1 4 x + . . . . . . . + l o g 9 1 2 2 x = 5 0 4

=> 2 l o g 9 x + 3 l o g 9 x + 4 l o g 9 x + . . . . . . . . + 2 2 l o g 9 x = 5 0 4

=> (1 + 2 + 3 + .+ 22) log9 x – log9 x = 504 Þ x = 81

New answer posted

5 months ago

0 Follower 10 Views

V
Vishal Baghel

Contributor-Level 10

I A 3 3 A + 3 A 2 = I A 3

=> 3A2 – 3A = 0

=> 3A (A – I) = 0

=>A2 = A

[ a 2 a b + b d 0 d 2 ] = [ a b 0 d ]    

Total number of ways = 8

New answer posted

5 months ago

0 Follower 5 Views

R
Raj Pandey

Contributor-Level 9

A = [ 1 1 0 0 1 1 0 0 1 ]

B = 7A20 – 20A7 + 2l

A 2 [ 1 1 0 0 1 1 0 0 1 ] [ 1 1 0 0 1 1 0 0 1 ] = [ 1 2 1 0 1 2 0 0 1 ]

A 3 = [ 1 2 1 0 1 2 0 0 1 ] [ 1 1 0 0 1 1 0 0 1 ] = [ 1 3 3 0 1 3 0 0 1 ]

A 4 = [ 1 3 3 0 1 3 0 0 1 ] [ 1 1 0 0 1 1 0 0 1 ] = [ 1 4 6 0 1 4 0 0 1 ]

a 1 3 o f A , A 2 , A 3 , . . . . . . .

are 0, 1, 3, 6,.

For 0, 1, 3, 6, .

S n = 0 + 1 + 3 + 6 + . . . . + t n

S n = 0 + + 3 + . . . . + t n 1 + t n

t n = 1 + 2 + 3 + . . . + ( t n t n 1 )

= ( n 1 ) . n 2

b 1 3 = 7 ( 1 9 0 ) 2 0 ( 2 1 ) + 0

= 1330 – 420 = 910

 

 

 

 

New question posted

5 months ago

0 Follower 1 View

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 66k Colleges
  • 1.2k Exams
  • 681k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.