Maths Statistics
Get insights from 54 questions on Maths Statistics, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths Statistics
Follow Ask QuestionQuestions
Discussions
Active Users
Followers
New answer posted
3 weeks agoContributor-Level 10
C.V. = (σ/x? ) * 100 ⇒ σ = (C.V. * x? ) / 100
∴ σ? = (50*30)/100 = 15 and σ? = (60*25)/100 = 15 ⇒ σ? - σ? = 0
New answer posted
3 weeks agoContributor-Level 10
mean = Σx? f? /Σf? = (32+8α+9β)/ (8+α+β)=6
⇒2α+3β=16 . (i)
d? =x? −x? =−4,0,2,3
f? d? ²=64,0,4α,9β
Variance σ²=Σf? d? ²/Σf? =6.8
⇒ (64+4α+9β)/ (8+α+β)=6.8
⇒2.8α+ (−2.2β)=9.6
⇒28α−22β=96
14α−11β=48 . (ii)
Solving (i) and (ii),
⇒β=2, α=5
New mean=Σx? f? /Σf? =85/15=17/3
New answer posted
a month agoContributor-Level 10
Var (1, 2, ., n) = (Σn²/n) - (Σn/n)² = 10.
(n (n+1) (2n+1)/6n) - (n (n+1)/2n)² = 10.
(n+1) (2n+1)/6 - (n+1)/2)² = 10.
(n+1)/12 * [2 (2n+1) - 3 (n+1)] = 10.
(n+1)/12 * (4n+2 - 3n-3) = 10.
(n+1) (n-1)/12 = 10.
n² - 1 = 120 ⇒ n² = 121 ⇒ n = 11.
Var (2, 4, ., 2m) = Var (2* (1, 2, ., m) = 2² * Var (1, 2, ., m) = 16.
4 * Var (1, 2, ., m) = 16.
Var (1, 2, ., m) = 4.
Using the formula from above: (m²-1)/12 = 4.
m² - 1 = 48 ⇒ m² = 49 ⇒ m = 7.
m + n = 7 + 11 = 18.
New answer posted
a month agoContributor-Level 10
1st observation: n? =10, mean x? =2, variance σ? ²=2.
Σx? = n? x? = 20.
σ? ² = (Σx? ² / n? ) - x? ² => 2 = (Σx? ²/10) - 2² => 6 = Σx? ²/10 => Σx? ² = 60.
2nd observation: n? , mean y? =3, variance σ? ²=1. Let n? =n.
Σy? = ny? = 3n.
σ? ² = (Σy? ² / n) - y? ² => 1 = (Σy? ²/n) - 3² => 10 = Σy? ²/n => Σy? ² = 10n.
Combined variance σ² = 17/9. n_total = 10+n.
Combined mean = (Σx? +Σy? )/ (10+n) = (20+3n)/ (10+n).
Combined Σ (squares) = 60+10n.
σ² = (Combined Σsq / n_total) - (Combined mean)²
17/9 = (60+10n)/ (10+n) - [ (20+3n)/ (10+n)]²
Multiply by 9 (10+n)²:
17 (10+n)² = 9 (60+10n) (10+n) - 9 (20+3n)²
17 (100+
New answer posted
a month agoContributor-Level 9
Variance of a, b, c & a+2, b+2, c+2, are same.
Given: b = a + c (i)
d² = (1/3) (a² + b² + c²) - [ (a+b+c)/3]²
as a + c = b
d² = (1/3) (a² + b² + c²) - (2b/3)²
9d² = 3 (a² + b² + c²) - 4b²
⇒ b² = 3 (a² + c²) - 9d²
New answer posted
a month agoContributor-Level 10
The data consists of n values of a and n values of -a.
Mean x? = (n*a + n* (-a) / 2n = 0 / 2n = 0.
Variance σ² = (Σx? ²)/N - x? ² = (n*a² + n* (-a)²) / 2n - 0² = 2na² / 2n = a².
If a value b is added to all observations, the new mean is x? ' = x? + b = 0 + b = b.
We are given the new mean is 5, so b=5.
Adding a constant does not change the variance. The new variance is still a².
We are given the new standard deviation is 20, so the new variance is 20² = 400.
Thus, a² = 400.
The required value is a² + b² = 400 + 5² = 400 + 25 = 425.
New answer posted
a month agoContributor-Level 10
x? = (2+4+10+12+14+x+y)/7 = 8
⇒ 42+x+y = 56 ⇒ x+y = 14
σ² = (Σx? ²/n) - (x? )²
16 = (4+16+100+144+196+x²+y²)/7 - (8)²
⇒ 16+64 = (460+x²+y²)/7
⇒ 560 = 460+x²+y² ⇒ x²+y² = 100
⇒ xy=48
(x-y)² = (x+y)² - 4xy = 4
|x-y| = 2
New answer posted
a month agoContributor-Level 10
x? = Σf? x? / Σf? = (10 + 15x + 50) / (4+x)
= (60+15x)/ (4+x) = 15
σ² = 50 = Σf? x? ²/Σf? - (x? )²
50 = (50+225x+1250)/ (4+x) - (15)²
50 = (1300+225x)/ (4+x) - 225
⇒ 275 (4+x) = 1300 + 225x
⇒ 50x = 200 ⇒ x = 4
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers