Characters 0/140
The Answer must contain atleast 20 characters.
Characters 0/300
Edit
Get insights from 6.5k questions on Maths, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths
New answer posted
For all sets A and B, (A – B) ∪ (A ∩ B) = A
Characters 0/2500
Contributor-Level 10
L . H . S . = ( A − B ) ∪ ( A ∩ B ) = [ ( A − B ) ∪ A ] ∩ [ ( A − B ) ∪ B ] = A ∩ ( A ∪ B ) = A = R . H . S . H e n c e , t h e g i v e n s t a t e m e n t i s ' T r u e ' .
For all sets A, B and C, show that (A – B) ∩ (C – B) = A –(B ∪ C) .
T o p r o v e ( A − B ) ∩ ( A − C ) = A − ( B ∪ C ) L . H . S . L e t x ∈ ( A − B ) ∩ ( A − C ) ⇒ x ∈ ( A − B ) a n d x ∈ ( A − C ) ⇒ ( x ∈ A a n d x ∉ B ) a n d ( x ∈ A a n d x ∉ C ) ⇒ x ∈ A a n d ( x ∉ B a n d x ∉ C ) ⇒ x ∈ A − ( B ∪ C ) S o , ( A − B ) ∩ ( A − C ) ⊂ A − ( B ∪ C ) … ( i ) R . H . S . L e t y ∈ A − ( B ∪ C ) ⇒ y ∈ A a n d y ∉ ( B ∪ C ) ⇒ y ∈ A a n d ( y ∉ B a n d y ∉ C ) ⇒ ( y ∈ A a n d y ∉ B ) a n d ( y ∈ A a n d y ∉ C ) ⇒ y ∈ ( A − B ) a n d y ∈ ( A − C ) S o , A − ( B ∪ C ) ⊂ ( A − B ) ∩ ( A − C ) … ( i i ) F r o m e q . ( i ) a n d ( i i ) , w e g e t A − ( B ∪ C ) = ( A − B ) ∩ ( A − C )
New question posted
Let U be the set of all boys and girls in a school, G be the set of all girls in the school, B be the set of all boys in the school, and S be the set of all students in the school who take swimming. Some, but not all, students in the school take swimming. Draw a Venn diagram showing one of the possible interrelationships among sets U, G, B and S.
A, B and C are subsets of Universal Set U. If A = {2, 4, 6, 8, 12, 20}
B = {3, 6, 9, 12, 15}, C = {5, 10, 15, 20} and U is the set of all whole numbers, draw a Venn diagram showing the relation of U, A, B and C.
Kindly go through the solution
If Y = {1, 2, 3, . 10}, and a represents any element of Y, write the following sets, containing all the elements satisfying the given conditions.
(i) a ∈ Y but a2 ∉ Y
(ii) a + 1 = 6, a ∈ Y
(iii) a is less than 6 and a ∈ Y
G i v e n t h a t : Y = { 1 , 2 , 3 , … , 1 0 } ( i ) { a ∈ Y b u t a 2 ∉ Y } = { 4 , 5 , 6 , 7 , 8 , 9 , 1 0 } ( i i ) { a + 1 = 6 , a ∈ Y } = { 5 } ( i i i ) { a < 6 a n d a ∈ Y } = { 1 , 2 , 3 , 4 , 5 }
If X = {1, 2, 3}, if n represents any member of X, write the following sets containing all numbers represented by
(i) 4n
(ii) n + 6
(iii) n2
(iv) n – 1
W e a r e g i v e n t h a t : X = { 1 , 2 , 3 } ( i ) { 4 n | n ∈ X } = { 4 , 8 , 1 2 } ( i i ) { n + 6 | n ∈ X } = { 7 , 8 , 9 } ( i i i ) { n 2 | n ∈ X } = { 1 2 , 1 , 3 2 } ( i v ) { ( n − 1 ) | n ∈ X } = { 0 , 1 , 2 }
Given that N = {1, 2, 3, ., 100}. Then write
(i) The subset of N whose elements are even numbers.
(ii) The subset of N whose element are perfect square numbers.
W e a r e g i v e n t h a t : N = { 1 , 2 , 3 , 4 , 5 , … , 1 0 0 } (i)Required subset whose elements are even = { 2 , 4 , 6 , 8 , … , 1 0 0 } (ii)Required subset whose elements are perfect squares = { 1 , 4 , 9 , 1 6 , 2 5 , 3 6 , … , 1 0 0 }
If A and B are subsets of the universal set U, then show that
(i) A ⊂ A ∪ B
(ii) A ⊂ B ⇔ A ∪ B = B
(iii) (A ∩ B) ⊂ A
( i ) G i v e n t h a t : A ⊂ U a n d B ⊂ U L e t x ∈ A o r x ∈ B ⇒ x ∈ A ∪ B H e n c e , A ⊂ ( A ∪ B ) ( i i ) I f A ⊂ B T h e n l e t x ∈ A ∪ B ⇒ x ∈ A o r x ∈ B ⇒ A ∪ B ⊂ B … ( i ) B u t B ⊂ A ∪ B … ( i i ) F r o m e q . ( i ) a n d ( i i ) , w e g e t A ∪ B = B L e t y ∈ A ⇒ y ∈ ( A ∪ B ) ⇒ y ∈ B ⇒ y ∈ B ⇔ A ∪ B = B ( i i i ) L e t x ∈ A ∩ B ⇒ x ∈ A a n d x ∈ B ⇒ x ∈ A S o , A ∩ B ⊂ A
Given L = {1, 2, 3, 4}, M = {3, 4, 5, 6} and N = {1, 3, 5}
Verify that L – (M ∪ N) = (L – M) ∩ (L – N)
G i v e n , L = { 1 , 2 , 3 , 4 } , M = { 3 , 4 , 5 , 6 } a n d N = { 1 , 3 , 5 } ∴ M ∪ N = { 1 , 3 , 4 , 5 , 6 } L − M ∪ N = { 2 } N o w , L − M = { 1 , 2 } , L − N = { 2 , 4 } ∴ ( L − M ) ∩ ( L − N ) = { 2 } H e n c e , L − M ∪ N = ( L − M ) ∩ ( L − N ) .
State which of the following statements a true and which are false. Justify your answer.
(i) 35 ∈ {x | x has exactly four positive factors}.
(ii) 128 ∈ {y | the sum of all the positive factors of y is 2y}
(iii) 3 ∉ {x | x4 – 5x3 + 2x2 – 112x + 6 = 0}
(iv) 496 ∉ {y | the sum of all the positive factors of y is 2y}.
( i ) G i v e n t h a t : 3 5 ∈ { x | x h a s e x a c t l y f o u r p o s i t i v e f a c t o r } ∴ F a c t o r s o f 3 5 a r e 1 , 5 , 7 , 3 5 H e n c e , t h e s t a t e m e n t ( i ) i s ' T r u e ' . ( i i ) G i v e n t h a t : 1 2 8 ∈ { y | t h e s u m o f a l l p o s i t i v e f a c t o r s o f y i s 2 y } ∴ F a c t o r s o f 1 2 8 a r e 1 , 2 , 4 , 8 , 1 6 , 3 2 , 6 4 a n d 1 2 8 . S u m o f a l l f a c t o r s = 1 + 2 + 4 + 8 + 1 6 + 3 2 + 6 4 + 1 2 8 = 2 5 5 ≠ 2 * 1 2 8 H e n c e , t h e s t a t e m e n t ( i i ) i s ' F a l s e ' . ( i i i ) G i v e n t h a t : 3 ∈ { x | x 4 − 5 x 3 + 2 x 2 − 1 1 2 x + 6 = 0 } ∴ x 4 − 5 x 3 + 2 x 2 − 1 1 2 x + 6 = 0 N o w f o r x = 3 , w e h a v e ( 3 ) 4 − 5 ( 3 ) 3 + 2 ( 3 ) 2 − 1 1 2 ( 3 ) + 6 ⇒ 8 1 − 1 3 5 + 1 8 − 3 3 6 + 6 ⇒ − 3 6 6 ≠ 0 H e n c e , t h e s t a t e m e n t ( i i i ) i s ' T r u e ' . ( i v ) G i v e n t h a t : 4 9 6 ∉ { y | t h e s u m o f a l l p o s i t i v e f a c t o r s o f y i s 2 y } ∴ T h e p o s i t i v e f a c t o r s o f 4 9 6 a r e 1 , 2 , 4 , 8 , 1 6 , 3 1 , 6 2 , 1 2 4 , 2 4 8 a n d 4 9 6 . ∴ T h e s u m o f a l l p o s i t i v e f a c t o r s = 1 + 2 + 4 + 8 + 1 6 + 3 1 + 6 2 + 1 2 4 + 2 4 8 + 4 9 6 = 9 9 2 = 2 * 4 9 6 H e n c e , t h e s t a t e m e n t ( i v ) i s ' F a l s e ' .
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
On Shiksha, get access to
College Comparison
This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.