Maths

Get insights from 6.5k questions on Maths, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths

Follow Ask Question
6.5k

Questions

0

Discussions

15

Active Users

0

Followers

New answer posted

a month ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

  a + 5 b  is collinear with c  

  a + 5 b = c           …(1)

b + 6 c is collinear with a  

⇒   b + 6 c = μ a               …(2)

From (1) and (2)

  b + 6 c = μ ( λ c 5 b )          

-> ( 1 + 5 μ ) b + ( 6 λ μ ) c = 0

? b and c  are non-collinear

-> 1 + 5m = 0 μ = 1 5  and 6 – lm = 0 Þ lm = 6

-> l = – 30

Now,

b = 6 c = 1 5 a

5 b + 3 0 c = a

a + 5 b + 3 0 c = 0 a + α b + β c = 0 ]

On comparing

α = 5, β = 30  α + β = 35

New answer posted

a month ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

  | 1 2 2 i + 1 | = α ( 1 2 2 i ) + β ( 1 + i )  

9 4 + 4 = α ( 1 2 2 i ) + β ( 1 + i )

5 2 = α ( 1 2 ) + β + i ( 2 α + β )             

α 2 + β = 5 2      .(1)

 –2α + β = 0                    …(2)

Solving (1) and (2)

α 2 + 2 α = 5 2

5 2 α = 5 2            

a = 1

b = 2

-> a + b = 3

New answer posted

a month ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

Variance = x 2 n ( x ¯ ) 2  

6 0 2 + 6 0 2 + 4 4 2 + 5 8 2 + 6 8 2 + α 2 + β 2 + 5 6 2 8 = ( 5 8 ) 2 = 6 6 . 2            

7 2 0 0 + 1 9 3 6 + 3 3 6 4 + 4 6 2 4 + 3 1 3 6 + α 2 + β 2 8 = 3 3 6 4 = 6 6 . 2             

2 5 3 2 . 5 + α 2 + β 2 8 3 3 6 4 = 6 6 . 2            

α2 + β2 = 897.7 * 8

= 7181.6

New answer posted

a month ago

0 Follower 1 View

A
alok kumar singh

Contributor-Level 10

y (x) = 2x – x2

y? (x) = 2x log 2 – 2x

M = 3

N = 2

M + N = 5

New answer posted

a month ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

Start with

(1) E ¯ : 6 ! 2 ! = 3 6 0  

(2)    G E ¯ : 5 ! 2 ! , G N ¯ : 5 ! 2 !  

(3) GTE : 4!, GTN: 4!, GTT : 4!

(4) GTWENTY = 1

360 + 60 + 60 + 24 + 24 + 24 + 1 = 553

New answer posted

a month ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

( 1 + x ) 1 1 = 1 1 C 0 + 1 1 C 1 x + 1 1 C 2 x 2 + . . . . . + 1 1 C 1 1 x 1 1

= 2 1 2 2 2 4 1 2
= 2 1 2 2 6 1 2 = 4 0 7 0 1 2 = 2 0 3 5 6 = m n
m + n = 2035 + 6 = 2041

 

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

( s i n x c o s x ) s i n 2 x t a n x ( s i n 3 x + c o s 3 x ) d x

( s i n x c o s x ) s i n x c o s x s i n 3 x + c o s 3 x d x , put sin3x + cos3x = t(3 sin2x*cosx – 3cos2xsinx) dx = dt

-> 1 3 d t t

= l n t 3 + c

= l n | s i n 3 x + c o s 3 x | 3 + c

             

           

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

f ( x ) = ( 2 x + 2 x ) t a n x t a n 1 ( 2 x 2 3 x + 1 ) ( 7 x 2 3 x + 1 ) 3

f ( x ) = ( 2 x + 2 x ) . t a n x . t a n 1 ( 2 x 2 3 x + 1 ) . ( 7 x 2 3 x + 1 ) 3

f ' ( x ) = ( 2 x + 2 x ) . s e c 2 x . t a n 1 ( 2 x 2 3 x + 1 ) . ( 7 x 2 3 x + 1 ) 3 + t a n x . ( Q ( x ) )

f ' ( 0 ) = 2 . 1 π 4 . 1

= π

 

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

A r e a = π ( 1 3 ) 2 2 [ 1 2 * 2 5 * 5 + 1 2 1 3 ( 1 6 9 y 2 ) d y ]

= 1 6 9 π 2 [ 1 2 5 2 + [ y 2 1 6 9 y 2 + 1 6 9 2 s i n 1 y 1 3 ] 1 2 1 3 ]

= 1 6 9 2 π 1 2 5 2 [ 1 6 9 2 * π 2 6 * 5 1 6 9 2 s i n 1 1 2 1 3 ]

= 1 6 9 π 4 6 5 2 + 1 6 9 2 s i n 1 1 2 1 3

New answer posted

a month ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

π 2 π 2 ( x 2 c o s x 1 + π 2 + 1 + s i n 2 x 1 + e ( s i n x ) 2 0 2 3 ) d x = π 4 ( π + α ) 2

0 π 2 { ( x 2 c o s x 1 + π x + 1 + s i n 2 x 1 + e ( s i n x ) 2 0 2 3 ) + ( x 2 c o s x 1 + π x + 1 + s i n 2 x 1 + e ( s i n x ) 2 0 2 3 ) } d x

= π 4 ( π + α ) 2

0 π 2 ( x 2 c o s x + 1 + s i n 2 x ) d x = π 4 ( π + α ) 2

0 π 2 x 2 c o s x d x + 0 π 2 ( 1 + s i n 2 x ) d x = π 4 ( π + α ) 2 .(1)

Let I 1 = 0 π 2 ( 1 + s i n 2 x ) d x

I 1 = 0 π 2 1 d x + 0 π 2 ( 1 c o s 2 x 2 ) d x

I 1 = π 2 + 1 2 [ π 2 + 0 ]

I 1 = 3 π 4

Let I 2 = 0 π 2 x 2 c o s x d x

I 2 = [ x 2 ( s i n x ) 2 x c o s x d x ] 0 π 2

I 2 = [ x 2 ( s i n x ) 2 x s i n x ] 0 π 2

I 2 = [ x 2 s i n x 2 ( x ( c o s x ) + c o s x ) ] 0 π 2

I 2 = [ x 2 s i n x 2 ( x c o s x + s i n x ) ] 0 π 2

I 2 = ( π 2 4 2 )

Put l1 and l2 in (1)

π 2 4 2 + 3 π 4

π 2 4 + 3 π 4 2

π 4 ( π + 3 ) 2

α = 3

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 679k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.