Maths

Get insights from 6.5k questions on Maths, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths

Follow Ask Question
6.5k

Questions

0

Discussions

14

Active Users

0

Followers

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

=11x17·cos4xdx

Here f (x) = x17 cos4x

f ( -x) = ( -x)17 cos4 ( -x)

= -x17 cos4x

= f (x)

i e, odd fxn

As aaf (x)dx=0 for odd fxn

therefore, I = 0.

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

LHS= 01xexdx=x01exdx01dxdxexdxdx

= [xex]0101exdx

= [1e10*e0] [ex]01

= (e10) (e1e0)

= e-e + e0

= e0 = 1=RHS

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let I=13dxx2(x+1).

The integrand is of the form.

1 = Ax (x + 1) + B (x + 1) + Cx2

= A (x2 + x) + B (x + 1) + Cx2

Comparing the coefficients,

A + C = 0 ____ (1)

A + B = 0 ______ (2)

B = 1 ________ (3)

Putting Equation (3) in (2),

A + 1 = 0

A = -1.

and putting value of A in Equation (1),

-1 + C = 0

C = 1

1x2(x+1)=1x+1x2+1x+1

I=13dxx2(x+1)=13dxx+13dxx2+13dxx+1

=[log|x|]13+[x2+12+1]13+[log?x+1]13

=[log3+log1][1x]13+[log|3+1|log|1+1|]

=log3+0[131]+log4log2

=log3(13)3+log22log2

=log3(2)3+2log2log2

=log2log3+23

=23+log23

Hence proved.

New answer posted

5 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

Let I = 14[|x1|+|x+2|+|x3|]dx

I = 14|x1|dx+14|x+2|dx+14|x3|dx

I = I1 + I2 + I3______(1)

So, I1 = 4 |x – 1| dx . {(x1)x1>0x>1(x1)x1<0x<1

14(x1)dx

[x22x]14=(422122)(41)

1523=1562=92.

I2 = 14|x2|dx {x2x2>0,x>2(x2)x2<0,x<2.

12(x2)dx+24(x2)dx

[x222x]12+[x222x]24

[(22212)(2*22*1)]+[(422222)(2*42*2)]

[412(42)]+[(82)(84)]

32+2+64

3+4+1282=52

 I3 = 14|x3|dx {(x3)x3>0,x>3(x3)x3<0,x<3

13(x3)dx+34(x3)dx

[x223x]13+[x223x]34

[(322122)(3·33·1)]+[(422322)(3*43*3)]

[826]+[723]

4+6+723=8+12+762=52

Hence Equation (1) becomes

I = 92+52+52

I = 192

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

2I=0nπtanxsecx+tanxdx2I=π0nsinxcosx1cosx+sinxcosxdx2I=π0πsinx+111+sinxdx2I=π0π1.dxπ0π11+sinxdx2I=π0π1.dxπ0π(1sinx)(1+sinx)(1sinx)dx

2I=π[x]0ππ0π1sinxcos2xdx2I=π2π0π(sec2xtanxsecx)dx2I=π2π[tanxsecx]0π

2I=π2π[tanπsecπtan0+sec0]2I=π2π[0(1)0+1]2I=π22π2I=π(π2)I=π2(π2)

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let I = 0π/2sin2xtan1(sinx)dx

0π22sinxcosxtan1(sinx)dx

Putting sin x = t =>cos xdx = dt.

whenx = 0, t = sin 0 = 0.

x=π/2t=sinπ/2=1

? I = 012·ttan1(t)dt

2[tant01tdt01ddttanttdtdt]

2{[tan1t*t22]010111+t2*t22dt}

2{[tan1(1)*12tan1(0)*02]1201(1+t2)11+t2dt}

2[π80]22{011+t21+t2dt01dt1+t2}

π401dt+[tan1t]01

π4[t]01+[tan1(1)tan1(0)]

π41+π4=2*π41=π21

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let I = 0π4sinx+cosx9+16sin2xdx

Let sin x – cos x = t. =>(cosx + sin x) dx = dt.

and (sin x – cos x)2 = t2

sin2x + cos2x – 2 sin x cos x = t2

1 – sin2x = t2.

sin2t = 1 - t2.

When x = 0, t = sin 0 – cos 0 = –1

? I = 10dt9+16(1t2)=10dt9+1616t2

10dt2516t2

10dt16(2516t2)

11610dt(54)2t2

116[12*(54)log|54+t54t|]10{dxa2x2=12alog|a+xax|}

116*42*5[log|5+4t54t|]10

140[log5+4*054*0log5+4(1)54(1)]

140[log55log19]

140[log1log9(1)]

140[0(1)log9]

140log9

140log32=240log3

120log3

New answer posted

5 months ago

0 Follower 1 View

V
Vishal Baghel

Contributor-Level 10

Kindly go through the solution

New answer posted

5 months ago

0 Follower 1 View

V
Vishal Baghel

Contributor-Level 10

Kindly go through the solution

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

=0π2cos2xcos2x+4sin2xdx

0π2cos2xcos2x+4(1cos2x)dx{?1=cos2x+sin2x.

0π2cos2xcos2x+44cos2xdx

0π2cos2x43cos2xdx

130π23cos2x43cos2xdx

130π2(43cos2x)443cos2xdx

13[0π2dx0π2443cos2xdx]

13{[x]0π20π2443*1sec2xdx}

13{π20π24sec2x4sec2x3dx}

13{π20π24sec2x4(1+tan2x)3dx}{sen2x=1+tan2x}

π6+231

where I1 = 0π22tan2x1+4tan2xdx.

Putting 2tan x = t =>2 sin2xdx = dt& when x = 0, t = 2 tan (0) = 0

x = π2 , t = 2 tan π2 = ∞

I1 = 0dt1+t2.

[tant]0

= tan–1 (∞) – tan–10

π20 = π2.

? I = π6+23*π2=π6+π3=π6.

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 679k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.