Maths

Get insights from 6.5k questions on Maths, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths

Follow Ask Question
6.5k

Questions

0

Discussions

14

Active Users

0

Followers

New answer posted

5 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

Given, A = [cosαsinαsinαcosα] . Then, A' = [cosαsinαsinαcosα]

and A + A' = I.

 [cosαsinαsinαcosα] + [cosαsinαsinαcosα] = [1001].

 [2cosα+cosαsinα+sinαsinαsinαcosα+cosα] = [1001]

 [2cotα002cotα] = [1001].

Equating the corresponding element of the matrix we get,

2 cos α = 1

 cos α=12

 α = cos -112 = cos-1(cos3)

Option B is correct

New answer posted

5 months ago

0 Follower 12 Views

V
Vishal Baghel

Contributor-Level 10

Given A and B are symmetric matrices,

(E) Then, A' = A and B' = B.

Now, (AB - BA)' = (AB)'-  (BA)'

= B'A' - A'B'.

= BA - AB

(AB - BA)' = - (AB - BA)

AB - BA is a skew symmetric matrix

∴ Option A is correct.

New answer posted

5 months ago

0 Follower 38 Views

V
Vishal Baghel

Contributor-Level 10

(i) Let A = [3511].

Then, A' = [3151].

Let P = 12 (A + A') = 12 {[3511]+[3151]}=12[3+35+11+51+]

12[6662]=[3331].

Then, P' = [3331] = P.

∴ P = 12 (A + A') is symmetric matrix

Let Q = 12 (A + A') = 12{[3511][3151]}=12[3351151(1)]

12[0440]=[0220].

Then Q.' = [0220] = (-1) [0220] = (-1) Q.

 Q.' = Q,

∴ Q = 12 (A - A') is a symmetric matrix

Now, P + Q = 12 (A + A') + 12 (A - A')

 P + Q = [3331]+[0220]=[3+03+2321+0]=[3511] = A.

This A is represented as a sun of symmetric and skew symmetric matrix

Let A = [622231213].

Then A' = [622231213].

Now, A + A' = [622231213]+[622231213]

[6+62+(2)2+22+(2)3+31+(1)2+21+(1)3+3] = [1244462426]

Let P = 12 (A + A') = 12[1244462426]=[622231213]

Then, P' = [622231213] = P'

∴ P = 12 (A + A') is asyntri matrix.

A - A' = [622231213][622231213]=[000000000]

Let Q = 12 (A - A') =

...more

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Given, A = [0aba0cbc0]

Then, A' = [0aba0cbc0]

So, A + A' = [0aba0cbc0]+[0aba0cbc0]=[0aabba+a0ccb+bc+c0]=[000000000]

12 (A + A') = 12[000000000]=[000000000].

And A - A' = [0aba0cbc0][0aba0cbc0]=[0a(a)b(b)aa0c(c)bbcc0]

[02a2b2a02c2b2c0]

12 (A - A') = 12[02a2b2a0a2c2b2c0] = [0aba0cbc0].

New answer posted

5 months ago

0 Follower 17 Views

V
Vishal Baghel

Contributor-Level 10

Given, A = [1567]

Then, A' = [1657]

Let P = A + A' = [1567]+[1657]=[1+15+66+57+7]=[2111114]

So, P' = [2111114] = P

i e, ( A + A' )' = A + A'.

Hence, A + A' is symmetric matrix.

Let Q = A A' = [1567][1657]=[11566577]=[0110].

So,Q1 = [0110] = (1) [0110] = (1) Q.

Q1 = Q.

i e, (A A')' = -(A - A').

Have, A - A' is a show symmetric matrix

New answer posted

5 months ago

0 Follower 10 Views

V
Vishal Baghel

Contributor-Level 10

(i) Given A = [115121513]

Then, A' = [115121513]

∴A' = A.

Here, A is symmetric matrix

(ii) Given, A = [011101110]

Then, A' = [011101110]=(1)[011101110]

 A' = (1) A.

 A' = A.

Hers A is a show symmetric matrix.

New answer posted

5 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

(i) Given, A = [cosαsinαsinαcosα]

Then, A' = [cosαsinαsinαcosα]

∴A' A = [cosαsinαsinαcosα][cosαsinαsinαcotα]

[cosαcosα+(sinα)(sinα)cosαsinα+(sinα)cosαsinαcosα+cosα(sinα)sinαsinα+cosαcosα]

[cos2α+sin2αcosαsinαsinαcosαsinαcosαcosαsinαsin2α+cos2α]

[1001] {?cos2x+sin2x=2}

= A ' A = 1.

Given,

(ii) 1 A = [sinαcosαcotαsinα]

Then, A' = [sinαcosαcotαsinα]

∴A' A = [sinαcosαcotαsinα][sinαcosαcosαsinα]

[sinαsinα+(cosα)(cosα)sinαcosα+(cosα)cosαcosαsinα+sinα(cosα)cosαcosα+sinαsinα]

[sin2α+cos2αsinαcotαcosαsinαcosαsinαsinαcosαcos2α+sin2α]

[1001] {?cos2x+coscos2x=1}.

  A' A. = I

New answer posted

5 months ago

0 Follower 6 Views

V
Vishal Baghel

Contributor-Level 10

Kindly go through the solution

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Kindly go through the solution

New answer posted

5 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

Kindly go through the solution

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 679k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.