Application of Derivatives

Get insights from 282 questions on Application of Derivatives, answered by students, alumni, and experts. You may also ask and answer any question you like about Application of Derivatives

Follow Ask Question
282

Questions

0

Discussions

4

Active Users

0

Followers

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The eqnof the given curve is y=x22x+7

Slope of tangent, dydx=2x2

(a) The line 2xy+9=0y=2x+9 compared to y=mx+c gives,

Slope of line = 2.

If the tangent of the curve is parallel to the line

dydx=slope of line

2x2=2

x=42x=2

When x=2,y=(2)22(2)+7=7

Hence, the point of contact of the tangent is (2, 7)

The eqn of tangent is y7=2(x2)

y7=2x4

2xy+3=0

(b) The line 5y15x=13y=155x+135y=3x+135

compared to y=mx+c gives

slope of line = 3

As the tangent to the curve is ⊥ to the line.

dydx= -1/slope opf line

2x2=13

6x6=1

6x=5

x=56

When x=56 we get y=(56)22*56+7

=253653+7

=2560+25236=21736

Hence, the point of contact of the tangent is (56,21736)

And eqn of the tangent is

y21736=13(x56)

3y21712=x+56

x+3y2171256=0

x+3y2171012=0

x+3y22712=0

12x+36y227=0.

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

(i) we have, y=x46x3+13x210x+5

slope of tangent, dydx=4x318x2+26x10

dydx|(x,y)=(0,5)=10.

slope of normal =110=110

Hence eqn of tangent at (0, 5) is

y5=10(x0)10x+y5=0

And eqn of normal at (0, 5) is

y5=110(x0)

10y50=x

x10y+50=0

(ii) We have, y=x46x3+13x210x+5

Slope of tangent, dydx=4x318x2+26x10.

dydx|(x,y)=(1,3)=4(1)318(1)2+26(1)10

=418+2610

= 30 28

= 2

Slope of normal =12

Hence eqn of tangent at (1, 3) is

y3=2(x1)

y3=2x2

2xy+1=0

And eqn of normal at (1,3) is

(y3)=12(x1)

2y6=x+1

x+2y7=0

(iii) We have, y=x3

Slope of tangent, dydx=3x2

dydx|(1,1)=3(1)2=3.

And slope of normal =13

Hence, eqn of tangent at (1, 1) is

y1=3(x1)

y1=3x3

3xy2=0

And eqn of normal at (1,1) is

y1=13(x1)

3y3=x+1

x+3y4=0.

(iv) We have, y=x2

Slope of tangent dydx=2x

dydx|(0,0)=0.

So, eqn of the tangent at (0,0) is

(y0)=0(x0)

y=0.

ie, x- axis

Hence, the eqn of normal is x = 0 ie, y-axis

(v) We have, x=costy=sint

dxdt=sint·dydt=cost

So, slope of tangent dydx=dy/dtdx/dt=costsint=cott

dydx|t=π4=cotπ4=1.

And slope of normal =11=1

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Diffrentiating x29+y216=1. wrt. X we get,

2x9+2y16dydx=0

2ydy16dx=2x9

dydx=16x9y

(i) When the tangent is to x-axis, the slope of tangent is 0

ie, dydx=0

16x9y=0

x=0 putting this in the eqn of curve. We get,

029+y216=1

y2=16

y=±4.

The point at which the tangents are parallel to x-axis are (0,4)and (0,4)

(ii) When the tangent is parallel to y-axis, the slope of the normal is 0.

ie, 1dydx=0

dxdy=0

9y16x=0

y=0 , putting this in the eqn of curve we get,

x29+y216=1.

x2=9

x=±3

The point at which the tangents are parallel to y-axis are (3,0)and (3,0)

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given eqn of the curve is y=1x22x+3

Slope of tangent to the curve is dydx=1(x22x+3)=ddx(x22x+3)

=(2x12)(x22x+3)2

Given, dydx=0

(2x2)(x22x+3)2=0

2(x1)=0

x=1

When x=1,y=1122*1+3=112+3=12

The point of contact of the tangent to the curve is (1,12)

The eqn of the line is y12=0(x1)

y=12

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given eqn of curve is y=1x3

Slope of tangent to the curve is dydx=1 (x3)2.

Given,  dydx=2

1 (x3)2=2

(x3)2=12 which is not possible

we conclude that there is no possible tangent to the given curve with slope = 2.

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given eqn of curve is y=1x1

Slope of tangent to the given curve is dydx=1(x1)2

Given that, slope of tangent = 1.

1(x1)2=1.

(x1)2=1.

x1=±1

x=1±1.

ie, X=1+1 or x=11

x=2 or x=0

When x=2,y=121=1

and when x=0,y=101=1.

Hence, the point of contact of the tangents are (2,1)and(0,1)

The reqd. eqn of line are y1=(1)(x2){?yy0=m(xx0) eqn of line 

and y(1)=(1)(x0).

y1=x+2 and y+1=x

x+y3=0 and x+y+1=0.

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given eqn of the curve is y=x311x+5

slope of tangent to the curve dydx=3x211

Then eqn of tangent is y=x11 xy11=0 which gives us slope =11=1

So, 3x211=1

3x2=1+11=12

x2=4

x=±2

When x = 2, y=2311(2)+5=822+5=9.

And when x = 2, y=(2)311(2)+5=8+22+5=19.

The point (2,9) when put into y=x11. we get

9=211

9=9 which is true.

and the point (2,19) when put into y=x11 gives,

19=211

19=13 which is not true.

Hence, the required point is (2,9) 

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let the point joining the chord be  (2, 0) (4, 4)

Then slope of the chord =4042 {? Slope=y2y1x2x1}

=42

= 2

The given eqn of the curve y= (x2)2 

slope of the tangent to the curve dydx=2 (x2).

Given that, the tangent is parallel to the chord PQ.

slope of tangent = slope of PQ.

2 (x2)=2.

x=1+2

x=3.

and y= (32)2=12=1.

The required point on curve is  (3, 1)

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given eqn of the curve is y=x33x29x+7.

slope of tangent to the given curve, dydx=3x26x9

when the tangent is parallel to x-axis dydx=0

3x26x9=0

x22x3=0

x2+x3x3=0

x(x+1)3(x+1)=0

(x+1)(x3)=0

 x = 3 or x = -1

When x = 3, y=333(3)29(3)+7=272727+7=20

And when x = -1 y=(1)33(1)29(1)+7=13+9+7=12

Hence, the required points are (3,20)(1,12)

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given eqn of the curves are

x=1asinθy=bcos2θ

so,  dxdθ=acosθdydθ=2bcosθsinθ

dydx=dy/dθdx/dθ=2bcosθsinθacosθ=2basinθ

Slope of tangent to curve at θ=π2 is dydx|θ=π2

=2basinπ2

=2ba

Hence, slope of normal to curve =12b/a=a2b

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.