Application of Derivatives

Get insights from 282 questions on Application of Derivatives, answered by students, alumni, and experts. You may also ask and answer any question you like about Application of Derivatives

Follow Ask Question
282

Questions

0

Discussions

4

Active Users

0

Followers

New answer posted

4 months ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

We have, f (x) = x2 + x + 1

So, f (x) = 2x + a

If f (x) is strictly increasing onx  (1, 2), f (x)>0.

So, 1

2*1<2*x<2*2

2<2x<4

2+a<2x+a<4+a.

2+a<f (x)<4+a.

The minimum value of f (x) is 2 + a and that of men value is 4 + a.

∴ 2 +a> 0and 4 + a> 0

a> -2 and a> -4.

a> -2.

∴The best value of a is -2.

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

We have, f (x) = x 100 + sin x - 1.

So, f (x) = 100x99 + cosx.

(A) When x (0,1). We get.

x>0

x99> 0

100 x99> 0.

Now, 0 radian = 0 degree

and 1 radian = 180°*1π=180°(227)=57°.

So, cosx> 0 for x∈ (0,1) radian = (0,57)

∴f (x) > 0 for x∈ (0,1).

(B) When x ∈(π2,π) we get,

So, x> 1

x99> 1

100x99> 100. {?(π2,π)=(1.57,3.14) which is great than 1}

And cosx is negative between -1 and 0.

So, f (x) = 100x99 + cosx> 100 - 1 = 99 > 0.

∴f(x) is strictly increasing on (π2,π)

(c) When x ∈(0,π2), we get,

 x> 0

x99> 0

100x99> 0

and cosx> 0. (firstquadrant).

I e, f(x) > 0.

∴f(x) is strictly increasing on (0,π2)

Hence, option (D) is correct.

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

(A) We have,

f(x) = cosx

So, f(x) = -sin x

When x [0,π2) we know that sin x> 0.

-sinx< 0. f(x) < 0 x(0,π2)

∴f(x) is strictly decreasing on (0,π2)

(B) We have, f(x) = cos 2x

So, f(x) = -2sin 2x

When x(0,π2) we know that sin x> 0.

i e, 0 π2
=> 0<2x< 

So, sin 2x> 0 (sinØ is ( +ve) in 1st and 2ndquadrant).

-2sin 2x< 0.

 f (x) < 0.

∴f (x) is strictly decreasing on (0,π2).

(c) We have, f(x) = cos 3x

f(x) = -3 sin 3x.

As 0<x<π2

0<3x<3π2

We can divide the interval into two

Case I At, 0 < 3x

sin 3x> 0.

-3 sin 3x< 0 {?0<Bx<π

0<x<π3.

 f(x) < 0.

∴f(x) is strictly decreasing on (0'π3)

case II. At π<3x<3π2weget(iiirdquadrout).

sin 3x< 0.

-3 sin 3x> 0.

 f(x) > 0. {?π<3x<3π2π3<x<π2}

∴f(x) is strictly increasing on (π3,π2)

Hence, f(x) is with a increasing or

...more

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

We have, f (x) = x2-x + 1.

So, f (x) = ddx (x2x+1)=2x1

Atf (x) = 0.

2x - 1 = 0

I e, x = 12 divides the real line into two disjoint interval the interval ( -1, 1) into

Two disjoint interval

(1, 12) (12, 1)

And f (x) is strictly increasing in  (12, 1) and strictly decreasing in  (1, 12)

Hence, f (x) is with a increasing or decreasing on ( -1,1).

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

We have, f (x) = log x.

So, f (x) = ddx (logx)=1x.

i e, f (x) =1x > 0. When x0x (0, )

Hence, the logarithmic fx is strictly increasing on (0, ).

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

We have, y = 4sinθ(2+cosθ)θ

Differentiating w rt.Ø we get,

dydθ=ddθ[4sinθ2+cosθθ]

=(2+corθ)ddθ(4sinθ)4sinθddθ(2+corθ)(2+cosθ)2dθdθ.

=(2+cosθ)(4cosθ)4sinθ(sinθ)(2+cosθ)21

=8cosθ+4cos2θ+4sin2θ(2+cosθ)2.1

=8cosθ+4(cos2θ+sin2θ)(2+cosθ)2(2+cosθ)2

=8corθ+4[4+cos2θ+4cosθ](2+corθ)2.

=8cosθ+44cos2θ4cosθ(2+cosθ)2

=4cosθcos2θ(2+cosθ)2=cosθ(4cosθ)(2+cosθ)2

When θ[0,π2] we know that, 0cosθ1.

So, 4cosθ>0

And also, (2 + cosθ)2> 0.

dydθ0θ[0,π2]

Hence, y is an increasing fxn of θ in [0,π2]

New answer posted

4 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

We have, y = [x (x- 2)]2.

Differentiating the above w rt. x we get,

dydx=ddx[x](x2)2

=2[x(x2)]ddx[x(x2)]

=2[x(x2)][xddx(x2)+(x2)dxdx]

= 2 [x (x- 2)] (x + x- 2)

= 2x (x - 2) (2x - 2)

dydx = 4x (x - 2) (x - 1).

Now, dydx=0

4x (x - 2) (x - 1) = 0.

i e, x = 0, x = 2, x = 1 divides the real line into

four disjoint interval. (,0], [0,1],[1,2] and [2,].

when x [,0].

dydx=(ve)(ve)(ve)= (ve)0,0x=0

∴f (x) is decreasing in [,0].

When x[0,1]

dydx=(+ve)(ve)(ve) =(+ve)0,x=0x=1

∴f (x) is increasing in [0,1].

When x [1,2]

dydx=(+ve)(ve)(+ve)=(ve)0, 0for x=1+x=2

∴f (x) is decreasing.

When x(2,).

dydx=(+ve)(+ve)(+ve)=(+ve)0,0,for x=2

∴f (x) is in creasing

Hence, f (x) is increasing for x [0,1)x[2,)

New answer posted

4 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

We have, y = log (1+x)2x2+x,x>1

Differentiating the above wrt.x.we get,

dydx=11+xddx(1+x) (2+x)ddx2x2xddx(2+x)(2+x)2

dydx=11+x(2+x)22x(2+x)2.

dydx=11+x4+2x2x(2+x)2=11+x4(2+x)2.

=(2+x)24(1+x)(1+x)(2+x)2

=4+x2+4x44x(1+x)(2+x)2

dydx=x2(1+x)(2+x)2.

The given domain of the given function isx> -1.

 (x + 1) > 0.

Also, x20

(2 + x)2> 0.

Hence, dydx=(+ve)(+v)(+ve)=(+ve)>0.

∴ y is an increasing function of x throughout its domain.

New answer posted

4 months ago

0 Follower 9 Views

V
Vishal Baghel

Contributor-Level 10

(a) f (x) = x2 + 2x - 5.

f(x) = 2x + 2 = 2 (x + 1).

At, f(x) = 0

2 (x + 1) = 0

x = -1.

At, x (,1),

f(x) = (- ) ve< 0.

So, f (x)is strictly decreasing or (,1).

At x ∈(1,)

f(x) = ( + ve) > 1

f(x) is strictly increasing on (1,).

(b) f(x) = 10 - 6x- 2x2

So, f(x) = - 6 - 4x = - 2 (3 + 2x).

Atf(x) = 0

 2 (3 + 2x) = 0.

 x = 32

At x (,32),

∴f(x) is strictly increasing on (,32)

At x (32,)

f(x) = ( -ve) ( + ve) = ( - ) ve< 0.

∴f (x) is strictly decreasing on (32,)

(c) f (x) = 2x3- 9x2- 12x.

So, f (x) =- 6x2- 18x- 12 = - 6 (x2 + 3x + 2).

= -6 [x2 + x + 2x + 2]

= -6 [x (x + 1) + 2 (x + 1)]

= -6 (x + 1) (x + 2)

At, f (x) = 0.

 6 (x + 1) (x + 2) = 0

x = -1 and x =

...more

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

We have, f (x) = 2x3- 3x2- 36x + 7.

So, f (x) = ddx (2x33x236x+7)=6x26x36.

= 6 (x2-x- 6).

= 6 (x2- 3x + 2x- 6)

= 6 [x (x- 3) + 2 (x- 3)]

= 6 (x- 3) (x + 2).

At, f (x) = 0

6 (x- 3) (x + 2) = 0.

So, when x- 3 = 0 or x + 2 = 0.

x = 3 or x = -2.

Hence we an divide the real line into three disjoint internal

(, 2) II (2, 3)andIII (3, )

At x ∈ (, 2),

f (x) = ( + ve) ( -ve) ( -ve) = ( + ve) > 0.

So, f (x) is strictly increasing in  (, 2)

At, x∈ ( -2,3),

f (x) = ( + ve) ( + ve) ( -ve) = ( -ve) < 0.

So, f (x) is strictly decreasing in ( -2,3).

At, x ∈ (3, )

f (x) = ( + ve) ( + ve) ( + ve) = ( + )ve> 0.

So, f (x) is strictly increasing in  (3, )

∴ (a) f (x) is strictly increasing in  (, 2)and (3, )

(b) f (x) is strictly decr

...more

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.