Application of Derivatives

Get insights from 282 questions on Application of Derivatives, answered by students, alumni, and experts. You may also ask and answer any question you like about Application of Derivatives

Follow Ask Question
282

Questions

0

Discussions

4

Active Users

0

Followers

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given eqn of the hyperbola is x2a2y2b2=1 ______(1)

Differentiating eqn (1) wrt 'x' we get,

2xa22yb2dydx=0

2yb2dydx=2xa2

dydx=b2xa2y

dydx|(x,y)=(x0,y0)b2x0a2y0 is the reqd slope of tangent to the curve

So, eqn of tangent at point (x0,y0) is

yy0=b2x0a2y0(xx0).

yy0b2y02b2=xx0a2x02a2

xx0a2yy0b2=x02a2y02b2

As (x0,y0) lies on the parabola given by eqn (1) we write,

x02a2y02b2=1

Hence, xx0a2yy0b2=1

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given eqn of the curves are

x=y2 ________(1)

and xy=x ___________(2)

Differentiating eqn (1) and (2) wrt 'x' we get,

 dy2dx=dxdx

2ydydx=1

dydx=12y _________(3)

and ddx(xy)=ddx(x)

xdydx+y=0

dydx=yx _________(4)

Since the two curves cut each other at right angles we get,

(12y)*(yx)=1.

2x=1 ________(5)

The point of intersection can be solve from eqn (1) and (2), 

y2.y=k

y3=k

y=k1/3

x=y2=r2/3.

Hence, using eqn (5) we get,

2(r)2/3=1.

[2r2/3]3=13

8r2=1

Hence proved

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given of the parabola is y2=4ax

slope of tangent is given by

ddxy2=ddx4ax

2ydydx=4a

dydx=2ay.

dydx|(at2,2at)=2a2at=1t

so, slope of normal

so, slope of normal =1(1t)=t

Hence eqn of tangent at point (at2,2at) is

y2at=1t(xat2)

ty2at2=xat2

xtyat2+2at2=0

xty+at2=0

And eqn of normal at point (at2,2at) is

(y2at)=(t)(xat2)

y2at=tx+at3

tx+y2at+at3=0

tx+yat(2+t2)=0

New answer posted

4 months ago

0 Follower 1 View

V
Vishal Baghel

Contributor-Level 10

The given eqn of the curve is y=x3+2x+6 _____(1)

slope of tangent to the curve, dydx=3x2+2

so, slope of normal to the curve =13x2+2

Now, the line x+14y+4=0y=114x414 compared to y=mx+c gives

slope of line = 114

As the normal is parallel to the line

13x2+2=114

3x2+2=14

3x2=12

x2=4

x=±2

When x=2,y=(2)3+2(2)+6=8+4+6=18

and when x=2,y=(2)3+2(2)+6=84+6=6

The point of contact of the normal are (2, 18) and (-2, -6)

Hence the eqn of normal are

y18=114(x2) and y(6)=114[x(2)]

14y252=x+2 y+6=114(x+2)

x+14y254=0 14y+84=x2

x+14y+86=0.

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given eqn of curve is ay2=x3 _____(1)

Differentiating eqn (1) wrt.x we get,

2aydydx=3x2.

dydx=3x22ay , slope of tangent

dydx|(x,y)=(am2,am3)=3[am2]22a[am3]=3a2m42a2m3=3m2

corresponding slope of normal =1(3m/2)=23m

Hence, eqn of normal at (am2,am3) is

yam3=23m(xam2).

3my3am4=2x+2am2

2x+3my3am42am2=0

2x+3myam2(2+3m2)=0

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given eqnof the curve is x2+y22x3=0 ________ (1)

Differentiating the given curve wrt.x we get,

2x+2ydydx2=0.

2ydydx=22x

dydx=1xy slope of tangent

Given, tangent is | to x-axis

ie,  dydx=0

1xy=0

x=1

Putting x = 1 in eqn (1) we get,

12+y22 (1i)3=0

y24=0

y2=4

y=±2

Hence, the required points are (1,2) and (1, 2).

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given eqn of the curve is y=4x32x5

Slope of tangent, dydx=12x210x4. ________(1)

Let P(x, y) be the required point at the tangent passing through the origin (0,0)

Then, dydx=y0x0=yx _________(2)

So, from (1) and (2) we get,

yx=12x210x4.

y=12x310x5.

Putting this value of y in the eqn of curve we get,

12x310x5=4x32x5.

8x38x5=0

8x3(1x2)=0

x3=0 or 1x2=0

x=0 or x=±1.

When, x=0,y=4(0)32(0)5=0

x=1,y=4(1)32(1)5=42=2

x=1,y=4(1)32(1)5=4+2=2

The required points are (0,0), (1,2) and (1,2)

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given eqn of the curve is y=x3 .

Slope of tangent,  dydx=3x2

As, slope of tangent = y – coordinate of the point.

dydx=y

3x2=x3

3x2x3=0

x2 (3x)=0

x=0x=3

When x=0, y=0

and when x=3·, y=33=27.

The required points are  (0, 0)and (3, 27)

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given eqn of the curve is y=7x3+11 .

Slope of tangent dydx=21x2

dydx|x=2=21 (2)2=21*4=84.

and dydx|x=2=21 (2)2=21*4=84

The tangent to the given curve at x = 2 and x = -2 are parallel.

New question posted

4 months ago

0 Follower 1 View

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.