Application of Derivatives

Get insights from 282 questions on Application of Derivatives, answered by students, alumni, and experts. You may also ask and answer any question you like about Application of Derivatives

Follow Ask Question
282

Questions

0

Discussions

4

Active Users

0

Followers

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let be the radius of the sphere &r be the error in measuring the radius.

Then, π = 9m and Δr = 0.03m.

Now, surface area S of the sphere is

S = 4πr2

So,  dsdr=8πr.

∴e, this =  (dsdr) Δr = 8πr.Δr = 8π * 9 * 0.03

= 2.16πm3.

Appropriate error in calculating the surface area is 2.16πm3.

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let x be the radius of the sphere & Δπ be the error in measuring the radius.

Then, π = 7m and Δr = 0.02m.

Now, volume v of sphere is

V=43πr3.

So,  dUdx=4πr2

dv= (dvdr)Δr=4πr2 (Δπ)

dv = 4π (7)2 (.0.02) = 3.92 πm3

∴The appropriate error is calculating the volume is 3.92πm3.

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

We know that, the surface area 5 of a 'x' when length cube, is S = 6x2.

So,  dS=dSdxΔx=12xΔx.

Given decrease in side,  Δx=1%x=x100.

dS=12x (x100)=0.12x2 m2.

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

We know that, the volume v of side 'a' mete of cube is v = x3.

So,  d= (ddx)Δx=3x2Δx.

Given that, increase in side = 1% of x.

Δx=x100

dv=3x2 (x100)=0.03x3 m3.

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Given, y = f (x) = x3- 7x2 + 15.

So,  dydx=f (x)=3x214x.

dy = (3x2- 14x) dx.

Δy = (3x2- 14x) Δx.

Let, x = 5 and Δx = 0.001. Then,

Δy = f (x + Δx) f (x).

f (x + Δx) = f (x) + Δy = f (x) + (3x2- 4x) Δx.

f (5 + 0.001) = 53- 7 (5)2 + 15 + [3 (5)2 - 14 (5)]. (0.001).

f (5.001) = 125 - 175 + 15 + (75 - 70) (0.001)

= -35 + 0.005 = - 34.995.

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Given, y = f (x) = 4x2 + 5x + 2.

So, f (x) = 8x + 5. dydx = 8x + 5 dy = (8x + 5) dx.

Let x = 2 and Δx = 0.01.Then,

f (x + Δx) = f (2 + 0.01) = f (2.01).

Δy = f. (x + Δx) f (Δx).

f (x +Δx) = f (x) +Δy.

= f (x) + dy = f (x) + (8x + 5) dx.

= f (2.01) = f (2) + (8 x 2 + 5). Δx {∴dx = Δx}

= 4 (2)2 + 5 (2) + 2 + 21 (0.01)

= 16 + 10 + 2 + 0.21 = 28.21.

New answer posted

4 months ago

0 Follower 6 Views

V
Vishal Baghel

Contributor-Level 10

(i) Let y= ?x : Let x = 25 and x = 0. 3.

Then, ?y = ?x+?x?x

=?25.3?25

=?25.3?5

?25.3=5+?y?????????????????y~dy.

= 5 + dy

5+(dydx)Ax.

=5+12?x?x.

=5+12?25?0.3

=5+0.32*5

= 5 + 0.03

?25.3=5.030

(ii) ?49.5

A.(ii)

Let y = ?x. Let x = 49 and x = 0.5.

Then, ?y=?x+?x?x.

=?49.5?49

?49.5=7+?y=7+(dydx)?x

=7+12?x?x

=7+12?49*(0.5)

=7+0.514

= 7 + 0.0357.

?49.5=7?035

(iii) ?0.6

A.(iii)

Let y = ?x. Let x = 0.64 and ?x = 0.04.

Then, ?y=?x+Ax?x

=?0.64-0.04?0.64.

=?0.6?0.8

?0.6=0.8+?y=0.8+(dydx)?x

=0.8+12?x?x

=0.8+12?0.64*(??0.04)

=0.8?0.042*0.8

= 0.8 - 0.025.

= 0.775.

(iv) (0.009)13

A.(iv)

Let y=x13 Let x = 0.008 and ?x = 0.00 1.

Then, ?y = [x+?x]13?[x]13

=(0.009)13?(0.008)13

(0.009)13=0.2+?y=0.2+dydx??x

=0.2+13(x13)2?x

=0.2+13[(0.008)13]2*(0.001)

=0.2+0.0013*(0.0)2=0.2+0.0010.12

= 0.2 + 0.0083.

= 0.208.

(v) (0.999)110

A.(v)

Let y=x110. Let x = 1 and ?x = -0.001

Then, ?y=(x+?x)110?x110

=(0.999)110?(1)110

?1(0.999)110=1+Ay

=1+dydx?x.

=1+110x910*?x

=1?0.00110(.1910)=1?0.00110=1?0.0001

= 0.999.

(vi) (15)14

A.(vi)

Let y=x14. Then, x = 16 and ?x = 1.

Then, ?y=(x+Ax)14?x14.

=(15)14?(16)14

?(15)14=2+Ay=2+dydxAx

=2+14x34?(?1)

=4?14(16)34

=2?14*8

=4?132

=64?132=6332=1.968

(vii) (26)13

A.(vii)

Let y=x13. Let x = 27 and ?x = 1.

Then, ?y=(x+?x)13?x13

=(26)13?(27)13

?(26)13=3+4y=3+dydxAx=3+13x23Ax,

=3?13(2F)23

=3?127

=81?127=8027=2.962.

(viii) (255)14

A.(viii)

Let y=x14. Let x = 256 and ?x = 1.

Then, ?y=(x+?x)14?x14.

=(255)14?(256)14

?(255)14=(256)14+4y=4+dydxAx.

=4+14x34?4x

=4?14(256)34

=4?1256

=1024?1256

=1023256=3.996

(ix) (82)14

A.(ix)

...more