Class 11th
Get insights from 8k questions on Class 11th, answered by students, alumni, and experts. You may also ask and answer any question you like about Class 11th
Follow Ask QuestionQuestions
Discussions
Active Users
Followers
New answer posted
2 months agoContributor-Level 10
This happens due to the fact that they possess strong C-C and H-H bonds which are non-polar sigma bonds and cannot be broken easily. Also, they lack polar functional groups and are saturated hydrocarbons. These properties combined make them less reactive overall.
New answer posted
2 months agoContributor-Level 10
F = -dU/dr = - [-12A/r¹³ + 6B/r? ]
F=0 ⇒ r= (2A/B)¹/?
U (at r= (2B/A)¹/? ) = -A²/4B
New answer posted
2 months agoContributor-Level 10
Equation of tangent to y²=4 (x+1) is y=m (x+1)+1/m.
Equation of tangent to y²=8 (x+2) is y=m' (x+2)+2/m'.
m'=-1/m.
Solving for intersection point, x+3=0.
New answer posted
2 months agoContributor-Level 9
Σ (1/a) (1-rb/a)? ¹ = (1/a)Σ (1+rb/a+r²b²/a²+.)
≈ (1/a)Σ (1+rb/a) = n/a + (b/a²)n (n+1)/2
Compare coeffs: α=1/a, β=b/2a². γ=b²/3a³. This differs from solution.
New answer posted
2 months agoContributor-Level 9
sinx+sin4x + sin2x+sin3x = 0
2sin (5x/2)cos (3x/2) + 2sin (5x/2)cos (x/2) = 0
2sin (5x/2) [cos (3x/2)+cos (x/2)] = 0
4sin (5x/2)cosxcos (x/2)=0.
sin (5x/2)=0 ⇒ 5x/2=kπ ⇒ x=2kπ/5. x=0, 2π/5, 4π/5, 6π/5, 8π/5, 2π.
cosx=0 ⇒ x=π/2, 3π/2.
cos (x/2)=0 ⇒ x=π.
Sum = 9π.
New answer posted
2 months agoContributor-Level 9
gogog (3n+1)=gog (3n+2)=g (3n+3)=3n+1. So gogog=I.
If fog=f, then f must map range of g to values consistent with f.
There exists a one-one function f: N→N such that fog=f. e.g. f (x)=x.
New answer posted
2 months agoContributor-Level 9
S? = 3n/2 [2a+ (3n-1)d]. S? = 2n/2 [2a+ (2n-1)d].
S? =3S? ⇒ 3n/2 [2a+ (3n-1)d] = 3 (2n/2) [2a+ (2n-1)d].
2a+ (3n-1)d = 2 [2a+ (2n-1)d] ⇒ 2a+ (n-1)d=0.
S? /S? = (4n/2 [2a+ (4n-1)d]) / (2n/2 [2a+ (2n-1)d]) = 2 [- (n-1)d+ (4n-1)d]/ [- (n-1)d+ (2n-1)d] = 2 (3n)/ (n)=6.
New answer posted
2 months agoContributor-Level 9
Hyperbola: 16 (x+1)² - 9 (y-2)² = 144. (x+1)²/9 - (y-2)²/16 = 1. Center (-1,2).
Foci (-1±ae, 2). a²=9, b²=16. e²=1+16/9=25/9, e=5/3. ae=5. Foci (4,2), (-6,2).
Centroid (h, k) of P, S, S': P (3secθ-1, 4tanθ+2).
h= (3secθ-1+4-6)/3 = secθ-1. k= (4tanθ+2+2+2)/3 = (4/3)tanθ+2.
(h+1)² - (3 (k-2)/4)² = 1. 16 (x+1)²-9 (y-2)²=16.
16x²+32x+16-9y²+36y-36=16. 16x²-9y²+32x+36y-36=0.
New answer posted
2 months agoContributor-Level 9
Vertex (2,0), Focus (4,0). Parabola y²=4a (x-h) = 4 (2) (x-2) = 8 (x-2).
Tangents from O (0,0): T²=SS? (y (0)-4 (x+0)+16)²= (0-0+16) (y²-8x+16). No, this is for point on tangent.
Equation of tangent y=mx+a/m = m (x-2)+2/m. Passes through (0,0) so -2m+2/m=0 ⇒ m=±1.
Tangents y=x, y=-x. Points of contact S (4,4), R (4, -4).
Area of ΔSOR = ½ * base * height = ½ * 8 * 4 = 16.
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 679k Reviews
- 1800k Answers
