Characters 0/140
The Answer must contain atleast 20 characters.
Characters 0/300
Edit
Get insights from 8k questions on Class 11th, answered by students, alumni, and experts. You may also ask and answer any question you like about Class 11th
New answer posted
State which of the following statements a true and which are false. Justify your answer.
(i) 35 ∈ {x | x has exactly four positive factors}.
(ii) 128 ∈ {y | the sum of all the positive factors of y is 2y}
(iii) 3 ∉ {x | x4 – 5x3 + 2x2 – 112x + 6 = 0}
(iv) 496 ∉ {y | the sum of all the positive factors of y is 2y}.
Characters 0/2500
Contributor-Level 10
( i ) G i v e n t h a t : 3 5 ∈ { x | x h a s e x a c t l y f o u r p o s i t i v e f a c t o r } ∴ F a c t o r s o f 3 5 a r e 1 , 5 , 7 , 3 5 H e n c e , t h e s t a t e m e n t ( i ) i s ' T r u e ' . ( i i ) G i v e n t h a t : 1 2 8 ∈ { y | t h e s u m o f a l l p o s i t i v e f a c t o r s o f y i s 2 y } ∴ F a c t o r s o f 1 2 8 a r e 1 , 2 , 4 , 8 , 1 6 , 3 2 , 6 4 a n d 1 2 8 . S u m o f a l l f a c t o r s = 1 + 2 + 4 + 8 + 1 6 + 3 2 + 6 4 + 1 2 8 = 2 5 5 ≠ 2 * 1 2 8 H e n c e , t h e s t a t e m e n t ( i i ) i s ' F a l s e ' . ( i i i ) G i v e n t h a t : 3 ∈ { x | x 4 − 5 x 3 + 2 x 2 − 1 1 2 x + 6 = 0 } ∴ x 4 − 5 x 3 + 2 x 2 − 1 1 2 x + 6 = 0 N o w f o r x = 3 , w e h a v e ( 3 ) 4 − 5 ( 3 ) 3 + 2 ( 3 ) 2 − 1 1 2 ( 3 ) + 6 ⇒ 8 1 − 1 3 5 + 1 8 − 3 3 6 + 6 ⇒ − 3 6 6 ≠ 0 H e n c e , t h e s t a t e m e n t ( i i i ) i s ' T r u e ' . ( i v ) G i v e n t h a t : 4 9 6 ∉ { y | t h e s u m o f a l l p o s i t i v e f a c t o r s o f y i s 2 y } ∴ T h e p o s i t i v e f a c t o r s o f 4 9 6 a r e 1 , 2 , 4 , 8 , 1 6 , 3 1 , 6 2 , 1 2 4 , 2 4 8 a n d 4 9 6 . ∴ T h e s u m o f a l l p o s i t i v e f a c t o r s = 1 + 2 + 4 + 8 + 1 6 + 3 1 + 6 2 + 1 2 4 + 2 4 8 + 4 9 6 = 9 9 2 = 2 * 4 9 6 H e n c e , t h e s t a t e m e n t ( i v ) i s ' F a l s e ' .
If Y = {x | x is a positive factor of the number
2p – 1 (2p – 1), where 2p – 1 is a prime number}. Write Y in the roaster form.
G i v e n , Y = { x | x i s a p o s i t i v e f a c t o r o f t h e n u m b e r 2 p − 1 ( 2 p − 1 ) , w h e r e 2 p − 1 i s a p r i m e n u m b e r } . Since, the factors of 2p−1 are 1,2,22,23,…,2p−1 and factors of 2p−1 are 1 and 2p−1 ∴ Y = { 1 , 2 , 2 2 , 2 3 , … , 2 p − 1 , 2 p − 1 } = 2 ( 2 p − 1 ) , 2 2 ( 2 p − 1 ) , … , 2 p − 1 ( 2 p − 1 )
Write the following sets in the roaster form
(i) D = {t | t3 = t, t ∈ R}
(ii) E = {w | =3, w ∈ R}
(iii) F = {x | x4 – 5x2 + 6 = 0, x ∈ R}
(i)We have, D={t|t3=t,t∈R}∴ t3=t⇒ t3−t=0 ⇒t(t2−1)=0⇒t(t−1)(t+1)=0 ⇒ t=0,1,−1∴ D={−1,0,1}(ii)We have, E={w|w−2w+3=3, w∈R}∴ w−2w+3=3⇒ w−2=3w+9 ⇒w−3w=9+2⇒ −2w=11 ⇒w=−112∴ E={−112}(iii)We have, F={x|x4−5x2+6=0,x∈R}∴ x4−5x2+6=0⇒ x4−3x2−2x2+6=0 ⇒x2(x2−3)−2(x2−3)=0⇒ (x2−3)(x2−2)=0 ⇒x=±3,±2∴ F={−3,−2,2,3}
(i) A = {x: x ∈ R, 2x + 11 = 15}
(ii) B = {x | x2 = x, x ∈ R}
(iii) C = {x | x is a positive factor of a prime number p}
( i ) W e h a v e , A = { x : x ∈ R , 2 x + 1 1 = 1 5 } ∴ 2 x + 1 1 = 1 5 ⇒ 2 x = 1 5 − 1 1 ⇒ 2 x = 4 ⇒ x = 2 ∴ A = { 2 } ( i i ) W e h a v e , B = { x | x 2 = x , x ∈ R } ∴ x 2 = x ⇒ x 2 − x = 0 ⇒ x ( x − 1 ) = 0 ⇒ x = 0 , 1 ∴ B = { 0 , 1 } ( i i i ) W e h a v e , C = { x | x i s a p o s i t i v e f a c t o r o f p r i m e n u m b e r p . } Since, positive factors of a prime number are 1 and the number itself. ∴ C = { 1 , p }
What effect does a catalyst have on the equilibrium position of a reaction?(a) A catalyst favours the formation of products(b) A catalyst favours the formation of reactants(c) A catalyst does not change the equilibrium position of a reaction(d) A catalyst may favour reactants or product formation, depending upon the direction in which the reaction is written.
Answer: (a) A catalyst favours the formation of products
New question posted
On addition of acetate ions to an acetic acid solution, the concentration of hydrogen ions, [H+]
(a) Becomes zero (b) Is unchanged (c) Increases (d) Decreases
Answer: (d) decreases
As the size of A increases down the group, H-A bond strength decreases and so the acid strength
(a) Increases (b) Decreases
(c) Remains constant (d) Becomes negligible
Answer: (a) increases
42. Find the derivative of the following functions:
(i)sin x cos x (ii)secx (iii)5 sec x + 4 cosx
(iv) cosecx (v)3cot x + 5 cosec x
(vi) 5sinx−6cosx+7 (vii) 2tanx−7secx
(i) f(x)=sin x cos x
So, f?(x)=limh?0f(x+h)?f(x)h
=limh?0sin(x+h)cos(x+h)?sinxcosxh
=limh?012h*[2sin(x+h)cos(x+h)?2sinxcosx]
=limh?012h[sin2(x+h)?sin2x]
=limh?012h[2cos2(x+h)+2x2sin2(x+h)?2x2]
=limh?01h[cos(2x+h)sinh]
=limh?0cos(2x+h)*limh?0sinhh
=cos(2x+0)
=cos2x
(ii) f(x)=secx
=limh?01h[sec(x+h)?secx]
=limh?01h[1cos(x+h)?1cosx]
=limh?01h[cosx?cos(x+h)cos(x+h)cosx]
=limh?01h[?2sin(x+x+h2)sin(x?(x+h)2)cos(x+h)cosx]
=limh?01h[?2sin(2x+h2)sin(?h/2)cos(x+h)cosx]
=limh?0(?1sin(2x+h2)cos(x+h)cosx*limh?0(?1)sinh/2h/2
=sinxcosx?cosx*1
=tanx?secx.
(iii) Given f(x)=5 sec x+4 cosx.
=limh?05sec(x+h)+4cos(x+h)?[5secx+4cosx]h.
=limh?05h[sec(x+h)?secx]+limh?04h[cos(x+h)?cosx]
=limh?05h[1cos(x+h)?1cosx]+limh?04h[?2sin(x+h+x2)sin(x+h?x2)]
=limh?05h[cosx?cos(x+h)cos(x+h)(cosx)]+limh?04h[?2sin(2x+h2)sinh2]
=limh?05h[?2sin(2x+h2)sin(?h/2)cos(x+h)cosx]?4limh?0sin(2x+h2)limh?0sinh/2h/2
=sin(2x+02)cos(x+0)cosx*1?4sin(2x2)
=5sinxcosx?1cosx?4sinx
=5tanx?secx?4sinx
(iv) Given f(x)=cosecx
f?(x)=limh?0f(x+h)?f(x)h
=limh?01h[cosec(x+h)?cosecx]
=limh?01h[1sin(x+h)?1sinx]
=limh?01h[sinx?sin(x+h)sin(x+h)sinx]
=limh?01h[2cos(x+x+h2)sin(x?(x+h)2)]sin(x+h)sinx]
=limh?01h[2cos(x+x+h2)sin(x?(x+h)2)sin(x+h)sinx]
=limh?01h[2cos(2x+h2)sin(?h/2)]sin(x+h)sinx]
=limh?0cos(2x+h2)sin(x+h)sinx*(?1)sin(2)h/2)
=cos(2x+02)sin(x+0)sinx*(?1)
=?cosxsinx*1sinx
=?cotx?cosecx
(v) Given,f(x)=3 cot x+5cosecx.
So, f?(x)=limh?0f(x+h)?f(x)h =2cos(x+0)cosx*1+7sin(2x+02)*(?1)
=limh?03cot(x+h)+5cosec(x+h)?[3cotx+5cosx)
h?03h[cot(x+h)?cotx]+limh?0
=?5h[cosec(x+h)?cosecx]
=limh?03h[cos(x+h)sin(x+h)?cosxsinx]+limh?05h[1sin(x+h)?1sinx]
=limh?03h[cos(x+h)sinx?cosxsin(x+h)sin(x+h)sinx]+limh?05h[sinx?sin(x+h)sin(x+h)sinx]
=limh?03h[sin(x?(x+h))sin(x+h)sinx+limh?05h[2cos(x+x+h2)sin(x?(x+h)2)sin(x+h)sinx
=limh?03sin(x+h)sinx*limh?0(?1)sinhh+limh?05h[2cos(2x+h2)sin(?h/2)sin(x+h)sinx
=3sinx?sinx*(?1)+5limh
29. Kindly consider the following
29.
Given, f (x) = (x-a1) (x-a2)… (x-an)
So, limx→a1f (x)=limx→a1 (x−a1)limx→a1 (x−a2)? limx→a1 (x−an)
= (a1-a1) (a1-a2) … (a1-an)
= 0 (a1-a2) … (a1-an)
= 0
And limx→af (x)=limx→a (x−a1)limx→a (x−a2)…limx→a (x−an)
= (a-a1) (a-a2) … (a-an)
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
On Shiksha, get access to
College Comparison
This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.