Limits and Derivatives
Get insights from 93 questions on Limits and Derivatives, answered by students, alumni, and experts. You may also ask and answer any question you like about Limits and Derivatives
Follow Ask QuestionQuestions
Discussions
Active Users
Followers
New answer posted
3 weeks agoContributor-Level 10
Lt? →? x/ (1−sinx)¹/? − (1+sinx)¹/? )
= 2x/ (1−sinx)¹/? − (1+sinx)¹/? ) Multiply by conjugate
= 4x/ (1−sinx)¹/²− (1+sinx)¹/²) Multiply by conjugate
= 8x/ (1−sinx−1−sinx) Multiply by conjugate
= 4x/sinx = −4
New answer posted
4 weeks agoContributor-Level 9
lim (x→0) [a e? - b cos (x) + c e? ] / (x sin (x) = 2
Using Taylor expansions around x=0:
lim (x→0) [a (1+x+x²/2!+.) - b (1-x²/2!+.) + c (1-x+x²/2!+.)] / (x * x) = 2
lim (x→0) [ (a-b+c) + x (a-c) + x² (a/2+b/2+c/2) + O (x³)] / x² = 2
For the limit to exist, the coefficients of lower powers of x in the numerator must be zero.
a - b + c = 0
a - c = 0 ⇒ a = c
Substituting a=c into the first equation: 2a - b = 0 ⇒ b = 2a.
The limit becomes: lim (x→0) [x² (a/2 + b/2 + c/2)] / x² = (a+b+c)/2
(a + b + c) / 2 = 2 ⇒ a + b + c = 4.
New answer posted
4 weeks agoContributor-Level 10
Let t = 3^ (x/2). As x→2, t→3^ (2/2) = 3.
The limit becomes lim (t→3) [ (t² + 27/t²) - 12 ] / [ (t - 3²/t) ].
lim (t→3) [ (t? - 12t² + 27)/t² ] / [ (t² - 9)/t ].
lim (t→3) [ (t²-9) (t²-3) / t² ] * [ t / (t²-9) ].
lim (t→3) [ (t²-3) / t ].
Substituting t=3: (3²-3)/3 = (9-3)/3 = 6.
(The provided solution arrives at 36, let's re-check the problem statement)
The denominator is t - 9/t, not t - 3²/t.
lim (t→3) [ (t²-9) (t²-3) / t² ] * [ t / (t-3) (t+3)/t ]
This leads to the same cancellation. Let's re-examine the image's steps.
lim (t-3) (t³ - 27)/ (t-3) . The algebra in the image is hard to follow but seems to manipul
New answer posted
a month agoContributor-Level 10
P (x) = 0
x² - x - 2 = 0
(x-2) (x+1) = 0
x = 2, -1 ∴ α = 2
Now lim (x→2? ) (√ (1-cos (x²-x-2) / (x-2)
⇒ lim (x→2? ) (√ (2sin² (x²-x-2)/2) / (x-2)
⇒ lim (x→2? ) (√2 sin (x²-x-2)/2) / (x²-x-2)/2) ⋅ (x²-x-2)/2) ⋅ (1/ (x-2)
⇒ for x→2? , (x²-x-2)/2 → 0?
⇒ lim (x→2? ) √2 ⋅ 1 ⋅ (x-2) (x+1)/ (2 (x-2) = 3/√2
New answer posted
a month agoContributor-Level 10
Applying L'Hôpital's Rule
Lim (t→x) [2tf² (x) – x² (2f (t)f' (t)] / 1
∴ 2xf² (x) – x² (2f (x)f' (x) = 0
⇒ f (x) – xf' (x) = 0
⇒ f' (x)/f (x) = 1/x ⇒ lnf (x) = lnx + C
At x=1, c=1
∴ lnf (x) = lnx + 1
when f (x) = 1
then lnx = -1
x = 1/e
New answer posted
a month agoContributor-Level 10
lim? →? (1/3 (a+2x)? ²/³2 - 1/3 (3x)? ²/³3) / (1/3 (3a+x)? ²/³1 - 1/3 (4x)? ²/³4)
= (1/3 (3a)? ²/³ (2-3) / (1/3 (4a)? ²/³ (1-4) = (3? ²/³)/ (4? ²/³) * 1/3
= (2? /³)/ (9¹/³) * 1/3 * 2/3 (1/9)¹/³
New answer posted
a month agoContributor-Level 10
lim_ (x→0) (1/x? ) {1 - cos (x²/2) - cos (x²/4) + cos (x²/2)cos (x²/4)} = 2?
⇒ lim_ (x→0) ( (1 - cos (x²/2) (1 - cos (x²/4) / x? ) = 2?
⇒ 2? = 2? ⇒ k = 8
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers