Complex Numbers and Quadratic Equations

Get insights from 193 questions on Complex Numbers and Quadratic Equations, answered by students, alumni, and experts. You may also ask and answer any question you like about Complex Numbers and Quadratic Equations

Follow Ask Question
193

Questions

0

Discussions

4

Active Users

0

Followers

New answer posted

a month ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

G i v e n | z + 5 | 4 . . . . . . . . . . ( i )

->Represent a circle ( x + 5 ) 2 + y 2 1 6

= z ( 1 + i ) + z ¯ ( 1 i ) 1 0 . . . . . . . . . . ( i i )

->Represent a line X – y 5

So max |z + 1|2 = AQ2

= ( 4 2 2 ) 2 + 8

= 3 2 + 1 6 2 = α + β 2  

Hence α + β) = 48

New answer posted

a month ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

p + q = 2

 p4 + q4 = 272

( p 2 + q 2 ) 2 2 p 2 q 2 = 2 7 2          

  [ ( p + q ) 2 2 p q ] 2 2 p 2 q 2 = 2 7 2          

Let pq = t Þ (4 – 2t)2 – 2t2 = 272

2t2 – 16 t – 256 = 0

->t = pq = 16

Required equation x2 – 2x + 16 = 0

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

4 s i n x + 1 1 s i n x = a x ( 0 , π 2 )  

 Let sin x = t, t (0, 1)

g ( t ) = 4 t + 1 1 t

g ' ( t ) = 0 t = 2 3

g ' ' ( 2 3 ) > 0

g ( t ) m i n i m u m = 4 2 / 3 + 1 1 2 / 3 = 9  

 Minimum value of a for which solution exist = 9

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

  z + α | z 1 | + 2 i = 0

Let z = x + iy

x + i ( y + 2 ) = α ( x 1 ) 2 + y 2            

 for α R y + 2 = 0 y = 2  

x 2 = α 2 [ ( x 1 ) 2 + 4 ]      = 0

1 α 2 4 5 α 2 5 4 5 2 α 5 2

4 ( p 2 + q 2 ) = 4 ( 5 4 + 5 4 ) = 1 0

          

          

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

  r = 1 n t a n 1 1 1 + r + r 2 = r = 1 n t a n 1 ( r + 1 ) 1 + r ( r + 1 )

= t a n 1 2 t a n 1 + . . . . . . + t a n 1 ( n + 1 ) t a n 1 n            

For n  value = π 2 π 4 = π 4  

t a n ( π 4 ) = 1           

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

( x + 1 ) 2 + | x 5 | = 2 7 4

Case l        x < 5

x 2 + 2 x + 1 x + 5 = 2 7 4       

( 2 x + 3 ) ( 2 x 1 ) = 0 x = 3 2 , 1 2     

Case II     x 5

x 2 + 2 x + 1 + x 5 = 2 7 4       

x = 1 2 ± 1 4 4 + 4 3 * 1 6 2 * 4 = 1 2 ± 8 3 2 8 ( r e j e c t e d )           

           because x > 5

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

x 2 2 ( 3 k 1 ) x + 8 k 2 7 > 0 a > 0 , & D < 0 ,       

a = 1 > 0 and D < 0

4 (3k – 1)2 – 4 (8k2 – 7) < 0

( 9 k 2 + 1 6 k 8 k 2 + 7 < 0 )            

k ( k 4 ) 2 ( k 4 ) < 0    

k ( 2 , 4 )           

K = 3

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

(2 – i) z = (2 + i) z ¯ , put z = x + iy

  y = x 2 . . . . . . . . ( i )

(ii) ( 2 + i ) z + ( i 2 ) z ¯ 4 i = 0  

x + 2y = 2

(iii) i z + z ¯ + 1 + i = 0  

Equation of tangent x – y + 1 = 0

Solving (i) and (ii)

x = 1 . y = 1 2 c e n t r e ( 1 , 1 2 )

Perpendicular distance of point ( 1 , 1 2 ) from x – y + 1 = 0 is p = r | 1 1 2 + 1 2 | = r   

r = 3 2 2       

         

New answer posted

a month ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

z 2 + α z + β = 0 , α , β R

roots : 1 – 2i, 1 + 2i

Sum of roots = 2 = -α and product of roots = 5 = β

α - β = -2 - 5 = -7

New answer posted

a month ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

α26α2=0, β26β2=0

α22=6α, β22=6β

a102a83a9=α10β102 (α8β8)3 (α9β9)=α8 (α22)β8 (β22)3 (α9β9)

α8.6αβ8.6β3 (α9β9)=2

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 687k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.