Continuity and Differentiability

Get insights from 80 questions on Continuity and Differentiability, answered by students, alumni, and experts. You may also ask and answer any question you like about Continuity and Differentiability

Follow Ask Question
80

Questions

0

Discussions

1

Active Users

0

Followers

New answer posted

2 weeks ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

f ' ( x ) = n 1 f ( x ) x 3 + n 2 f ( x ) x 5

= f ( x ) ( n 1 + n 2 ) ( x 3 ) ( x 5 ) ( x ( 5 n 1 + 3 n 2 ) n 1 + n 2 )

f ' ( x ) = ( x 3 ) n 1 1 ( x 5 ) n 2 1 ( n 1 + n 2 ) ( x ( 5 n 1 + 3 n 2 ) n 1 + n 2 l )  

option (C) is incorrect, there will be minima.

New answer posted

3 weeks ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

I n x ( 2 , 2 )  

 |x|- 1| is not differentiable at x = -1, 0, 1

|cospx| is not differentiable at x =  3 2 , 1 2 , 1 2 , 3 2 -  

New answer posted

a month ago

0 Follower 5 Views

A
alok kumar singh

Contributor-Level 10

(a + √2bcosx) (a - √2bcosy) = a² - b²
⇒ a² - √2abcosy + √2abcosx - 2b²cosxcosy = a² - b²
Differentiating both sides:
0 - √2ab (-siny dy/dx) + √2ab (-sinx) - 2b² [cosx (-siny dy/dx) + cosy (-sinx)] = 0
At (π/4, π/4):
ab dy/dx - ab - 2b² (-1/2 dy/dx + 1/2) = 0
⇒ dy/dx = (ab+b²)/ (ab-b²) = (a+b)/ (a-b); a, b > 0

New answer posted

a month ago

0 Follower 6 Views

A
alok kumar singh

Contributor-Level 10

For x>2, f (x) = ∫? ¹ (5+1-t)dt + ∫? ² (5+t-1)dt + ∫? (5+t-1)dt
= ∫? ¹ (6-t)dt + ∫? ² (4+t)dt + ∫? (4+t)dt
= [6t-t²/2]? ¹ + [4t+t²/2]? ² + [4t+t²/2]?
= (6-1/2) + (8+2 - (4+1/2) + (4x+x²/2 - (8+2)
= 5.5 + 5.5 + 4x+x²/2 - 10 = 4x+x²/2 + 1.
f (2? ) = 8+2+1 = 11. f (2? ) = 5 (2)+1 = 11. Continuous.
f' (x) = 4+x for x>2. f' (2? ) = 6.
For x<2, f' (x)=5. f' (2? )=5.
Not differentiable at x=2.

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

81. Given, yx = xy

Taking log,

x log y .log x

Differentiating w r t 'x' we get,

xddxlogy+logydxdx=yddxlogx+logxdydx

xy·dydx+logy=yx+logxdydx

logxdydxxydydx=logyyx

dydx [ylogxxy]=xlogyyx

dydx=y (xlogyy)x (ylogxx).

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

80. Given, xy + yx = 1

Let 4 = xy and v =., we have,

u + v = 1.

dydx+dvdy=0 ___ (1)

So, u = xy

= log u = y log x(taking log)

Now, differentiating w r t 'x',

14dydx=yddxlogx+logxdydx.

dydx=4[yx+logxdydx]

xy·yx+xylogx·dydx

= xy- 1y + xy log x dydx.

And v = yx.

log v = x log y.

Differentiating w r t 'x',

1vdvdx=xddxlogy+logydxdx

=xydydx+logy

dvdx=v[xydydx+logy]

=yx·xy·dydx+yxlog·y

= yx- 1. xdydx + yx log y.

So, eqn (1) becomes

xy- 1y + xy log x dydx + yx - 1 dydx + yx log y = 0

dydx(xylogx+yx+1·x) = - (xy- 1y + yx log y)

dydx=(xy1·y+yxlogy)(xylogx+yx1·x).

New answer posted

4 months ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

79. Let y = (x cos x) x + (x sin) 1x

Putting u = (x cos x)x and v = (x sin x) 1x we, have,

y = u + v

dydx=dydx+dvdx ____ (1)

As u = (x cos x)x :

Taking log,

Log u = x log (x cos x)

= x [log x + log (cos x)]

Differentiating w r t 'x' we get,

14dudx=xddx [log x + log (cos x)] + [log x + dog (cos x)] dxdx

=x[1x+1cosxdcosxdx] + [log x +log (cos x)]

=[1+xcosx(sinx)] + log x + log (cos x)

= 1 -x tan x + log (x cos x)

dydx = 4 [1 -x tan x + log (x cose)]

=(x cos x)x  (x cos x)x [1 -x tan + log + log (x cos x)]

And v = (x sin x) 1x

Taking log, log v = 1x log (x sin x)

=1x (log x + log sin x)

Differentiating w r t 'x'

1vdvdx=1x·ddx (log x + log sin x) + (log x + log sin x) ddx(1x)

=1x[1x+1sinxddxsinx] + log

...more

New answer posted

4 months ago

0 Follower 17 Views

A
alok kumar singh

Contributor-Level 10

78. Let y = xx cos x  a2+1x21

Putting  4 = xx cos x and vx2+1x21 we have,

y = u + v

dydx=dydx+dvdx ____ (1)

As u |=| xx cos x.

Taking log,

Log u = x cos x log x

Differentiating w r t 'x',

1udydx=xddx [cos x log x] + cos x log x dxdx

= x {cotxddxlogx+logxddxcosx} + cos x log x.

=x{cosx·1xsinx·logx} + cos x log x.

= cos x- sin x. log x + cos x log x.

dydx=u [cosx + cos x log x- sin x log x]

= xx cos x [cos x + cos x log x-x sin x log x]

And v = x2+1x21

So, dvdx=(x21)ddx(x2+1)(x2+1)ddx(x1)(x21)2

=(x21)(2x)(x2+1)(2x)(x21)2

=2x32x2x32x(x21)2

=4x(x21)2.

Hence, eqn (1) becomes,

dydx xxcos x [cos x + cos x log x-x sin x log x4x(x21)2

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

77. Let y = x sin x + (sin x) cos x

Putting u = x sin x and v = (sin x) cos x we have,

y = u + v

dydx=dydx+dvdx _____ (1)

As u = x sin x

Taking log,

Log u = sin x log x

Differentiating w r t 'x',

,

14dydx = sin x ddx log x + log x ddx sin x

sinxx+ cos x log x

dydx=u[sinxx+cosxlogx]

= x sin x [sinxx+cosxlogx].

And v = (sin x) cos x

Taking log,

Log v = cos x log (sin x).

Differentiating w r t 'x',

1vdvdx = cos x ddx log (sin x) + log (sin x) ddx cos x

=cosxsinxddx sin x- sin x log (sin x)

= cot x cos x- sin x log (sin x)

dvdx = v [cot x cos x - sin x log (sin x)]

= (sin x) cos x [cot x cos x- sin x log (sin x)]

Hence, eqn (1) becomes

dydx=xsinx[sinxx+cosxlogx] + (sin x) cos x [cot x cos x- sin x log (

...more

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

76. Kindly go through the solution

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.