First Order Differential Equation

Get insights from 14 questions on First Order Differential Equation, answered by students, alumni, and experts. You may also ask and answer any question you like about First Order Differential Equation

Follow Ask Question
14

Questions

0

Discussions

4

Active Users

0

Followers

New answer posted

a month ago

0 Follower 4 Views

R
Raj Pandey

Contributor-Level 9

e? (dy/dx) - 2e? sinx + sinxcos²x = 0
d/dx (e? ) - (2sinx)e? = -sinxcos²x
I.F. = e^ (-∫2sinxdx) = e²cosx
Solution: e? e²cosx = -∫e²cosx sinx cos²x dx
Let cosx=t, -sinxdx=dt
∫e²? t²dt = e²? t²/2 - ∫2te²? /2 dt = e²? t²/2 - [te²? /2 - ∫e²? /2 dt] = e²? t²/2 - te²? /2 + e²? /4 + C
e^ (y+2cosx) = e²cosxcos²x/2 - e²cosxcosx/2 + e²cosx/4 + C
y (π/2)=0 ⇒ e? = 0 + 0 + e? /4 + C ⇒ C=3/4
y = ln (e²cosx (cos²x/2-cosx/2+1/4)+3/4e? ²cosx)
y (0) = ln (e² (1/2-1/2+1/4)+3/4e? ²) = ln (e²/4+3/4e? ²)
This seems very complex. The solution provided leads to α=1/4, β=3/4. 4 (α+β)=4.

New answer posted

a month ago

0 Follower 2 Views

R
Raj Pandey

Contributor-Level 9

d y d x = 2 x + y 2 x 2 y 2 y d y 2 y 1 = 2 x d x p u t 2 y 1 = t 2 y l n 2 d y = d t

1 l n 2 d t t = 2 x d x 1 l n 2 l n t = 2 x l n 2 + C l n 2    put x = 0 and y = 1 we get C = -1

l n ( 2 y 1 ) = 2 x 1    put x = 1 and we get y = log2 (1 + e)

New answer posted

2 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

dydx=x+y2xy

Let x – 1 = X, y – 1 = Y

then DE: dYdX=X+YXY=1+YX1YX

Put y = vx

then dYdX=V+XdVdX

V + XdVdX=1+V1V

XdVdX=1+V1VV

=1+V21V

1V1+V2dV=dXX

V1V2+1dV+dXX=0

12ln|V2+1|tan1V+ln|X|=c

lnV2+1Xtan1V=c

ln(1+(Y1X)2|X1|)tan1Y1X1=c

(2,1)ln(1+01)0=c

c = 0

ln(X1)2+(Y1)2=tan1Y1X1

point (k + 1, 2) lnk2+1=tan11k

12ln(k2+1)=tan11k

New answer posted

2 months ago

0 Follower 9 Views

P
Payal Gupta

Contributor-Level 10

sin(2x2).109e(tanx2)dy+4xydx=42.x.(sinx2cosπ4cosx2sinπ4)dx

ln(tanx2)dy+4xsin(2x2)ydx=4x(sinx2cosx2)sin(2x2)dx

Integrate

y.ln(tanx2)=2.ln(sinx2+cosx21sinx2+cosx2+1)+C

x=π6,y=1 calculate C.

New answer posted

2 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

 ? dxdy=x2xyx2y21

dydx=xyx2y21x2

Letxy=vxdydx+y=dvdx

Put x = 1, y = 1 tan1=cc=π4

tan1 (xy)=lnx=π4

e (y (e))=tan (1+π4)=tan1+11tan1

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.