Integrals

Get insights from 366 questions on Integrals, answered by students, alumni, and experts. You may also ask and answer any question you like about Integrals

Follow Ask Question
366

Questions

0

Discussions

5

Active Users

0

Followers

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

12(4x35x2+6x+9)dx.=[4*x445*x33+6x22+9x]12=[x453x3+3x2+9x]12=[245x*23+3*22+9*2][1453*13+3*12+9*1]=[16403+12+18][153+3+9]=[4840+36+543][35+9+273]=983343=643.

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

231xdx=231xdx= [logx]23=log3log2=log32

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

11 (x+1)dx=11.xdx+11dx= [x22]11+ [x]11= [122 (1)22]+ [1 (1)].= [1212]+ [1+1]=2.

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

We know that  abf(x)dx=limh0nh[f(a)+f(a+h)+f(a+2h)+......+f(a+(n1)h)]

where nh = b - a

04(x+e2x)dx=limh0nh[1+(h+e2h)+(2h+e4h)+......+((n1)h+e2(n1)h)]=limh0nh[(h+2h+......+(n1)h)+(1+e2h+e4h+......+e2(n1)h)]=limh0nh[h(1+2+......+(n1))+a(rn1r1)]

=limh0h[h.hn(n1)2+1((e2n)n1)e2h1]

=limh0h[nh(nhh)2+h((e2nh)n1)e2h1]=limh0h[4(4h)2+h((e24)1)e2h1]=[4(40)2+(e81)limh0he2h1]=8+(e81)12limh02he2h1=8+(e81)2=e8152[?limx0xex1=1]

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

We know that  abf(x)dx=limh0nh[f(a)+f(a+h)+f(a+2h)+......+f(a+(n1)h)]

where nh = b - a

Here, a = -1, b = 1, nh = 2 and f(x) = ex

14exdx=limh0nh[e1+e1e+e1e2h+......+e1e(n1)h]=limh0nhe1[(eh)n1]eh1

?  The series within brackets is a G.P. and  Sn=arn1r1 ]

=limh0nhe(enh1)eh1=limh0he1(e21)eh1=e1(e21)limh0heh1=e1(e21)*1[?limx0xex1=1]=e1+2e1=ee1=e1e

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

We know that  abf(x)dx=limh0nh[f(a)+f(a+h)+f(a+2h)+......+f(a+(n1)h)]

where nh = b - a

Here, a = 1, b = 4, nh = 3 and f(x) = x2 - xf(x) =  x2 - x 

14(x2+x)dx=limh0nh[0+h+h+2h+4h2+......+(n1)h+(n1)2h2]=limh0nh[h(1+2+3+......+(n1))+h2(12+22+......(n1)2)]=limh0nh[4nh+4hhn(n1)2+hhhn(n1)(2n1)6]=limh0nh[h(1+2+3+......+(n1))+h2(12+22+......(n1)2)]=limh0h[3(3h)2+3(3h)(2.3h)6]=[3(30)2+3(30)(60)6]=[92+9]=272

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

We know that  abf(x)dx=limh0nh[f(a)+f(a+h)+f(a+2h)+......+f(a+(n1)h)]

where nh = b - a

Here, a = 2, b = 3, nh = 1 and f(x) = x2

abx2dx=limh0nh[4+(4+4h+h2)+(4+8h+22h2)+......+(4+4(n1)h+(n1)2h2)]=limh0nh[4n+4h+(1+2+3+......+(n1))+h2(12+22+......(n1)2)]=limh0nh[4nh+4hhn(n1)2+hhhn(n1)(2n1)6]=limh0nh[4nh+4hh(nhh)2+nh(nhh)(2nhh)6]

=limh0h[4+2(1h)+(1h)(2h)6]=[4+2(10)+(10)(20)6]=6+13=193

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

We know that  abf(x)dx=limh0nh[f(a)+f(a+h)+f(a+2h)+......+f(a+(n1)h)]

where nh = b - a

Here, a = 0, b = 5, nh = 5 and f(x) = x + 1

05(x+1)dx=limh0nh[1+(h+1)+(2h+1)+.....+((n1)h+1)]05(x+1)dx=limh0nh[n+h(1+2+3.....+(n1))]05(x+1)dx=limh0nh[nh+hn(n1)2]=limh0n[nh+nh(nhh)2]

=limh0[5+5(5h)2]=[5+5(50)2]=5+252=352

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

We know that  abf(x)dx=limh0nh[f(a)+f(a+h)+f(a+2h)+......+f(a+(n1)h)]

where  nh=ba

Here, a = a, b= b and f(x) = x

abxdx=limh0h[a(a+h)+(a+2h)+......+(a+(n1)h)]

abxdx=limh0h[na+(1+2+3+.....+(n1))]

abxdx=limh0h[anh+hn(n1)2]

=limh0h[anh+nh(nhh)2]

=limh0h[a(ba)+(ba)(bah)2][?nh=ba]

=[a(ba)+(ba)(ba)2]=(ba)[a+ba2]=(ba)[2a+ba2]=(ba)(b+a)2=b2a22

New answer posted

4 months ago

0 Follower 1 View

V
Vishal Baghel

Contributor-Level 10

Kindly go through the solution

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.