Integrals

Get insights from 366 questions on Integrals, answered by students, alumni, and experts. You may also ask and answer any question you like about Integrals

Follow Ask Question
366

Questions

0

Discussions

5

Active Users

0

Followers

New answer posted

3 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

LetI=0π4log(1+tanx)dx(i)=0π4log[1+tan(π4x)]dx?{0af(x)dx=0af(ax)dx=0π4log[1+tanπ4tanx1+tanπ4tanx]dx=0π4log·{1+1tanx1+tanx}dx=0π4log{1+tanx+1tanx1+tanx}dxI=0π4log(21+tanx)dx(ii)Adding(i)&(ii)weget,I+I=0π4{log(1+tanx)+log(21+tanx)}dxI=0π4log{1+tanx_*21+tanx}dx=0π4log2dx=[xlog2]0π4=log2[π40]=π4log2I=π8log2.

New answer posted

3 months ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

Let????I=?0?4log(1+tanx)dx?????(i)=?0?4log[1+tan(?4?x)]dx?{?0af(x)dx=?0af(a?x)dx=?0?4log[1+tan?4?tanx1+tan?4tanx]dx=?0?4log·{1+1?tanx1+tanx}dx=?0?4log{1+tanx+1?tanx1+tanx}dxI=?0?4log(21+tanx)dx?????(ii)Adding(i)&(ii)weget,I+I=?0?4{log(1+tanx)+log(21+tanx)}dxI=?0?4log{1+tanx_*21+tanx}dx=?0?4log2dx=[xlog2]0?4=log2[?4?0]=?4log2I=?8log2.

New question posted

3 months ago

0 Follower 1 View

New answer posted

3 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

LetI=01x(1xn)dx=01(1x)[1(1x)n]dx{0af(x)dx=0af(ax)dx}=01(1x)(11+x)ndx

=01(1x)xndx=01(xnxn+1)dx=[xn+1n+1]01[xn+1+1n+1+1]01=[1n+1n+10n+1n+1][1n+2n+20n+2n+2]=1n+11n+2=(n+2)(n+1)(n+1)(n+2)=1(n+1)(n+2)

New answer posted

3 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

LetI=28|x5|dx.{x5ifx5>0,x>5(x5)ifx5<0,x<5}=25(x5)dx+58(x5)dx=[x225x]25+[x225x]58=[(5225*5)(2225*2)]+[(8225*8)(5225*5)]=[252252+10]+[(3240252+25].=252+17+17252= 34  25= 9

New answer posted

3 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

LetI=55|x+2|dx=52|x+2|dx+25|x+2|dx

? |x + 2| = x + 2 if if x + 2 > 0 => x> –2

– (x + 2) if x + 2 < 0 => x< 2.

=[x222x]52+[x22+2x]25=[((2)22+2(2))((5)22+2(5))]+[(522+2*5)((2)22+2(2))]=[24252+10]+[252+102+4]=8+252+252+12==8+25+12=29.

New answer posted

3 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let,I=0π2cos5xdxsin5x+cos5x(i)=0π2cos5(π2x)sin5(π2x)+cos5(π2x)dxI=0π2sin5xcos5x+sin5xdx(ii)

Adding(i)&(ii)weget,2I=0π2{cos5xsin5x+cos5x+sin5xcos5x+sin5x}dx=0π2cos5x+sin5xsin5x+cos3xdx=0π2dx=π2I=π4.

New answer posted

3 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let,I=0π2sin32xsin32x+cos32xdx(i)=0π2sin32(π2x)sin32(π2x)+cos32(π2x)dx=0π2cos32xcos32x+sin32xdx(ii)(i)+(ii)2I=0π2{sin32xsin32x+cos32x+cos32xcos32x+sin32x}dx=0π2{sin32x+cos32xsin32x+cos32x}dx2I=0π2dx=π2I=π/4

New answer posted

3 months ago

0 Follower 1 View

V
Vishal Baghel

Contributor-Level 10

Kindly go through the solution

New answer posted

3 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

LetI=0π2cos2xdx·(i)

=0π2cos2(π2x)dx{?0af(x)=0af(ax)dx.I=0π2sin2xdx(ii)Adding(i)&(ii),2I=0π2(cos2x+sin2x)dx=0π21·dx2I=[x]0π2=π202I=π2I=π

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.