Limits and Derivatives

Get insights from 158 questions on Limits and Derivatives, answered by students, alumni, and experts. You may also ask and answer any question you like about Limits and Derivatives

Follow Ask Question
158

Questions

0

Discussions

6

Active Users

1

Followers

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

68. Given, f (x) = (x + cos x) (x tan x)

So, f?(x) = (x + cos x) ddxtanx)+ddx(x+cosx)·(xtanx)

=(x+cosx)(dxdxddxtanx)+(ddx+dcosxdx)(xtanx)

Let g (x) = tan x.

So, g?(x) =

 

=limh01h[sin(x+h)cos(x+h)sinxcosx]

=limh01h[sin(x+h)cosxsinxcos(x+h)cos(x+h)·cosx]

=limh01h[sin(x+hx)cosx·cos(x+h)]

=limh01cosx·cos(x+h)*limh0sinhh

=1cos2x*1

= sec2x ______ (2)

     Put (2) in (1) we get,

     f?(x) = (x + cos x) (1 - sec2x) +(1 - sin x) (x- tan x)

     We know that,

     1 + tan2x = sec2x

     Þ 1 - sec2x = - tan2x

     So, f?(x) = - tan2x(x + cos x) +(x- tan x) (1 - sin x).

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

67. Given, f (x) = (ax2 + sin x) (p +q cos x).

So, f? (x) = (ax2 + sin x) ddx  (p+qcosx)+ (p+qcosx)ddx (ax2+sinx)

= (ax2+sinx) (0+qddxcosx)+ (p+qcosx) (addx (x2)+ddxsinx)

= (ax2+sinx) (q (sinx)+ (p+qcosx) (a·2x+cosx)

= q sin x (ax2 + sin x) + (p + q cos x) (2ax + cos x)

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

66. Given, f (x) = (x2 + 1) cos x

f? (x) = (x2 + 1) ddxcosx+cosxddx (x2+1)

= (x2+1) (sinx)+cosx (2x+0) [? ddxcosx=sinx]

= x2 sin x sin x + 2x cos x.

New answer posted

4 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

65. Given, f (x) = x4. (5 sin x 3 cos x)

f(x)=x4ddx(5sinx3cosx)+(5sinx3cosx)dx4dx.

=x4[5ddxsinx3·dcosxdx]+[5sinx3cosx]·4x3

As ddxsinx=cosx

and ddxcosx=sinx

Thus,

f(x)=x4[5cosx+3sinx]+[5sinx3cosx]·4x3

=x3[5cosx+3xsinx+20sinx12cosx]

=x3[5xcosx+3xsinx+20sinx12cosx].

New answer posted

4 months ago

0 Follower 7 Views

A
alok kumar singh

Contributor-Level 10

64.  Given, f (x) = sin(x+a)cosx

f(x)=cosxddxsin(x+a)sin(x+a)ddxcosxcos2x

Let g?(x) = sin (x + a)

So, g?(x) = limh0g(x+h)g(x)h

= cos (x + a)

And P(x) = cos x

So, P?(x) = limh0p(x+h)p(x)h

Thus, f?(x) = cosx·cos(x+a)sin(x+a)(sinx)cos2x

=cosx·cos(x+a)+sin(x+a)sinxcos2x

=cos(x+ax)cos2x

=cosacos2x

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

63. Given, f (x) = a+bsinxc+dcosx

f?(x) = (c+dcosx)ddx(bsinx)(a+bsinx)ddx(c+dcosx)(c+dcosx)2

f(x)=(c+dcosx)·b·ddx(sinx)(a+bsinx)·d·ddx(cosx)(c+dcosx)2_____(1)

{Copy (A)}

So, g?(x) = limh0g(x+h)g(x)h

=limh01h[cos(x+h)cosx]

=limh01h[2·sin(x+h+x2)sin(x+hx2)]

=limh01h[2sin(2x+h2)sin(h2)]

=sin(2x+02)*1

= sin x ______ (2)

And p?(x) = limh0p(x+h)p(x)h

=limh0sin(x+h)sinxh

=limh01h2cos(2x+h2)sin(h2)

=limh0cos(2x+h2)*limh0sin(h2)(h2)

= cos x _____ (3)

So, put (2) and (3) in (1) we get,

f(x)=(c+dcosx)(b·cosx)(a+bsinx)(d·sinx)(c+dcosx)2

=beccosx+bdcos2x+adsinx+bdsin2x(c+dcosx)2

=bccosx+adsinx+bd(cos2x+sin2x)(c+dcosx)2

=bccosx+adsinx+bd(c+dcosx)2

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

62. Given, f (x) =sinnx

By chain rule,

f? (x) = n (sin x)n-1 ddh sin x

Let (gx) = sinx

So, g? (x) limh0g (x+h)g (x)h

=limh0sin (x+h)sinxh

=limh02hcos (2a+h2)sin (h2)

=limh0cos (2x+h2)*limh0sin (h2)h2

cos (2x+0)2*1

= cos x.

So, f? (x) = n (sin x)n-1 cos x.

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

61. Given, f (x) = secx1secx+1

=1cosx11cosx+1

=1cosx1+cosx

So, f?(x) = (1+cosx)ddx(1cosx)(1cosx)ddx(1+cosx)(1+cosx)2

=(1+cosx)(1)ddx(cosx)(1cosx)ddx(cosx)(1+cosx)2

Let g(x) = cos x.

So, g?(x) =limh0g(x+h)g(x)h

=limh0cos(x+h)cosxh

=limh02hsin(x+h+x2)sin(x+hx2)

=limh02hsin(2x+h2)sin(h2)

=limh0sin(2x+h2)*limh0sinh2h2

=sin(2x+02)*1

= -sin x.

So, f?(x) (1+cosx)(1)(sinx)(1cosx)(sinx)(1+cosx)2

=sinx+cosxsinx+sinxsinxcosx(1+cosx)2

=2sinx(1+cosx)2

=2sinx(1+1secx)2=2sinx*sec2x(secx+1)2=2secx·sinx(sinx+1)2·cosx.

=2secx·tanx(sinx+1)2

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

60. Given, f (x) = sinx+cosxsinxcosx

So, f?(x) = sinxcosxddx(sinx+cosx)(sinx+cos2)ddx(sinxcosx)(sinxcosx)2

Let g(x) = cos x and p(x) = sin x.

{from so g'(x) A ) (upto equation 3)

Let g(x) = cos2 and p(x) = sin x.

So, g?(x) = limh0g(x+h)g(x)h

=limh01h[cos(x+h)cosx]

=limh01h[2·sin(x+h+x2)sin(x+hx2)]

=limh01h[2sin(2x+h2)sin(h2)]

=sin(2x+02)*1

= -sin x ______ (2)

And p?(x) = limh0p(x+h)p(x)h

=limh0sin(x+h)sinxh

=limh01h2cos(2x+h2)sin(h2)

=limh0cos(2x+h2)*limh0sin(h2)(h2)

= cos x _____ (3)

Putting (2) and (3) in (1) we get,

f(x)=(sinxcosx)[cosxsinx](csinx+cosx)[cosx+sinx](sinxcosx)2

=(sinxcosx)2(sinx+cosx)2(sinxcosx)2

=(sin2x+cos2x)+2sinxcosx(sin2x+cos2x)2sinxcosx(sinxcosx)2

=11(sinxcosx)2=2(sinxcosx)2

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

59. Given, f (x) = cosx1+sinx

So, f?(x) = (1+sinx)ddx(cosx)cosxddx(1+sinx)(1+sinx)2

Putting (2) and (3) in (1) we get,

f(x)=(1+sinx)(sinx)cosx(cosx)(1+sinx)2

=sinxsin2xcos2x(1+sinx)2

=sinx(sin2x+cos2x)(1+sinx)2

=(sinx+1)(1+sinx)2=11+sinx.

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.