Limits and Derivatives

Get insights from 158 questions on Limits and Derivatives, answered by students, alumni, and experts. You may also ask and answer any question you like about Limits and Derivatives

Follow Ask Question
158

Questions

0

Discussions

6

Active Users

1

Followers

New answer posted

2 months ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Givenf(x)={x+2if x1,cx2if x>1LHLf(x)=limx1(x+2)=limh0(1h+2)=limh0(1h)=1RHLf(x)=limx1+cx2=limh0c(1+h)2=c Since the limitsexit.LHL=RHLc=1

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Givenf(x)={kcosxπ2x when xπ2,3when x=π2LHLf(x)=limxπ2kcosxπ2x=limh0kcos(π2h)π2(π2h)=limh0ksinhππ+2h=limh0ksinh2h=k2.1=k2[?limx0sinxx=1]RHLf(x)=limxπ2+kcosxπ2x=limh0kcos(π2+h)π2(π2+h)=limh0ksinhππ2h=limh0ksinh2h=k2[?limx0sinxx=1]Wearegiventhatlimxπ2f(x)=3So,k2=3k=6

New answer posted

2 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Givenlimx4|x4|x4LHL=limx4(x4)x4=1[?|x4|=(x4)ifx<4]RHL=limx4+(x4)x4=1[?|x4|=(x4)ifx>4]LHLRHLHence,the limitdoesnotexist.

New answer posted

2 months ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimxπ1sinx2cosx2(cosx4sinx4)=limxπcos2x4+sin2x42sinx4.cosx4(cos2x4sin2x4)(cosx4sinx4)[?cos2x=cos2xsin2xsin2x+cos2x=1]=limxπ(cosx4sinx4)2(cosx4sinx4)(cosx4+sinx4)(cosx4sinx4)=limxπ1(cosx4+sinx4)Taking limit wehave=1cosπ4+sinπ4=112+12=122=12.



New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimxπ4tan 3xtanxcos (x+π4)=limxπ4tanx(tan 2x1)cos (x+π4)=limxπ4tanx.limxπ4[(1tan 2x)cos (x+π4)]=1*limxπ4(1tanx)(1+tanx)cos (x+π4)=limxπ4(1+tanx)*limxπ4[1tanxcos (x+π4)]=(1+1)*limxπ4(cosxsinx)cosx.cos (x+π4)=2*limxπ42(12cosx12sinx)cosx.cos (x+π4)=22*limxπ4(cosπ4.cosxsinπ4.sinx)cosx.cos (x+π4)=22*limxπ4cos (x+π4)cosx.cos (x+π4)=22*limxπ41cosxTaking limitwehave=22cosπ4=2212=2*2=4.

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimx0sin(α+β)xsin(αβ)x+sin2αxcos2βxcos2αx.x=limx0[2sinαx.cosβx+sin2αx].x2sin(α+β)x.sin(αβ)x=limx0[2sinαx.cosβx+2sinαx.cosαx].x2sin(α+β)x.sin(αβ)x=limx02sinαx(cosβx+cosαx).x2sin(α+β)x.sin(αβ)x=limx0sinαx[2cos(α+β2)x.cos(αβ2)x].xsin(α+β)x.sin(αβ)x=limx0sinαx[2cos(α+β2)x.cos(αβ2)x].x2sin(α+β2)x.cos(α+β2)x.2sin(αβ2)x.cos(αβ2)x=limx0sinαx.x2sin(α+β2)xsin(αβ2)x=limx012sinαxαx.(αx).x[sin(α+β2)x(α+β2)x*(α+β2).x][sin(αβ2)x(αβ2)x*(αβ2).x]=12.αx2(α+β2)x(αβ2)x=12.[α(α+β2)(αβ2)]=12.4αα2β2=2αα2β2

New answer posted

2 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimy0(x+y)sec(x+y)xsecxy=limy0xsec(x+y)+ysec(x+y)xsecxy=limy0[xsec(x+y)xsecx]y+limy0ysec(x+y)y=limy0x[sec(x+y)secx]y+limy0sec(x+y)=limy0x[1cos(x+y)1cosx]y+limy0sec(x+y)=limy0x[cosxcos(x+y)y.cosx.cos(x+y)]+limy0sec(x+y)=limy0x[2sin(x+x+y2).sin(xxy2)y.cosx.cos(x+y)]+limy0sec(x+y)=limy0x[2sin(x+y2).sin(y2)y.cosx.cos(x+y)]+limy0sec(x+y)=limy0y20x[2sin(x+y2).sin(y2)cosx.cos(x+y).(y2).2]+limy0sec(x+y)Takingwehave=x[sinx.1cosx.cosx]+secx=xsecxtanx+secx=secx(xtanx+1)

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Lety=x cos x(i)y+Δy=(x+Δx)cos(x+Δx)(ii)Subtractingeqn.(i)fromeqn.(ii)y+Δyy=(x+Δx)cos(x+Δx)x cos xΔy=xcos(x+Δx)+Δxcos(x+Δx)x cos xDividingbothsidesbyΔxandtakethe limit wegetlimΔx0ΔyΔx=limΔx0xcos(x+Δx)x cos x+Δxcos(x+Δx)Δxdydx=limΔx0x[cos(x+Δx) cos x]Δx+limΔx0Δxcos(x+Δx)Δx=limΔx0x[2sin(x+Δx+x)2.sin(x+Δxx)2]Δx+limΔx0cos(x+Δx)=limΔx0Δx20x[2sin(x+Δx2).sinΔx2]2*Δx2+limΔx0cos(x+Δx)Δx20Taking limits wehave=x[sinx]+cosx[?limΔx20sinΔx2Δx2=1]=xsinx+cosx

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Letf(x)=x2/3(i)f(x+Δx)=(x+Δx)2/3(ii)Subtractingeqn.(i)fromeqn.(ii)f(x+Δx)f(x)=(x+Δx)2/3x2/3DividingbothsidesbyΔxandtakethewegetlimΔx0f(x+Δx)f(x)Δx=limΔx0(x+Δx)2/3x2/3Δxf'(x)=limΔx0x2/3[1+Δxx]2/3x2/3Δx=limΔx0x2/3[(1+Δxx)2/31]Δx=limΔx0x2/3[(1+23.Δxx+)1]Δx[ExpandingbyBinomialtheoremandrejectingthehigherpowersofΔxasΔx0]=limΔx0x2/3.23.ΔxxΔx=23x2/31=23x1/3.

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Letf(x)=ax+bcx+d(i)f(x+Δx)=a(x+Δx)+bc(x+Δx)+d(ii)Subtractingeqn.(i)fromeqn.(ii)f(x+Δx)f(x)=a(x+Δx)+bc(x+Δx)+dax+bcx+dDividingbothsidesbyΔxandtakethewegetlimΔx0f(x+Δx)f(x)Δx=limΔx0a(x+Δx)+bc(x+Δx)+dax+bcx+dΔxf'(x)=limΔx0(ax+aΔx+b)(cx+d)(ax+b)(cx+cΔx+d)[c(x+Δx)+d](cx+d).Δx=limΔx0acx2+acΔx.x+bcx+adx+adΔx+bdacx2acΔx.xadxbcxbc.Δxbd(cx+cΔx+d)(cx+d)Δx=limΔx0(adbc)Δx(cx+cΔx+d)(cx+d).Δx=limΔx0(adbc)(cx+c.Δx+d)(cx+d)Taking limit,wehave=(adbc)(cx+d)(cx+d)=(adbc)(cx+d)2

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.