Maths Integrals

Get insights from 376 questions on Maths Integrals, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths Integrals

Follow Ask Question
376

Questions

0

Discussions

5

Active Users

0

Followers

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let,I=π2π2sin7xdx.

Are f(x) = sin7x

f(–x) = sin7(–x) = –sin7x = –f(x).

i.e., odd function.

So, I = 0.

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

LetI=0πxdx1+sinx(i)=0ππx1+sin(πx)dx{0af(x)dx=0af(ax)dx}=0ππx1+sinxdx(ii)(i)+(ii),2I=0π(x1+sinx+πx1+sinx)dx=0ππ1+sinxdx

=2π0π211+sinxdx{02af(x)dx=20af(x)dx}

=2π0π2dx1+sin(π2x)=2π0π2dx1+cosx.{?cos2x=2cos2x1}=2π0π2dx2cos2x2=π0π2sec2x2dx

=π[tanx212]0π2=2π[tanπ4tan0]I=2π2*(10)I=π

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

LetI=π2π2sin2xdx.I=20π2sin2xd(x)(i)=20π2sin2(π2x)dx=20π2cos2xdx(ii)

(i)+(ii)weget,?aaf(x)dx=20af(x)dxiff(x)=f(x)

f(x) = sin2x

 f(x) = sin2(x) = (1)2sin2x= sin2x 

if,f(x) =f(x)

{?0af(x)dx=0af(ax)dx}2I=20π2(sin2x+cos2x)dxI=0π21dx=π2.

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

LetI=0π2(2logsinxlogsin2x)dx=0π2(logsin2xlogsin2x)dx=0π2logsin2xsin2xdx=0π2logsin2x2sinx·cosxdx.

I=0π2log(12tanx)dx(i)=0π2[log12tan(π2x)]dx0af(x)dx=0af(ax)dx=0π2(log12cotx)dx(ii)(i)+(ii)I+I=0π2[log(12tanx)+log(12cotx)]dx2I=0π2log(12tanx*12cotx)dx=0π2log14dx.=0π2(log1log4)dx=0log40π2dx=log4*π2I=log22*π22=2log2*π22=π2log2.

New answer posted

4 months ago

0 Follower 1 View

V
Vishal Baghel

Contributor-Level 10

Kindly go through the solution

New answer posted

4 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

LetI=0π4log(1+tanx)dx(i)=0π4log[1+tan(π4x)]dx?{0af(x)dx=0af(ax)dx=0π4log[1+tanπ4tanx1+tanπ4tanx]dx=0π4log·{1+1tanx1+tanx}dx=0π4log{1+tanx+1tanx1+tanx}dxI=0π4log(21+tanx)dx(ii)Adding(i)&(ii)weget,I+I=0π4{log(1+tanx)+log(21+tanx)}dxI=0π4log{1+tanx_*21+tanx}dx=0π4log2dx=[xlog2]0π4=log2[π40]=π4log2I=π8log2.

New answer posted

4 months ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

Let????I=?0?4log(1+tanx)dx?????(i)=?0?4log[1+tan(?4?x)]dx?{?0af(x)dx=?0af(a?x)dx=?0?4log[1+tan?4?tanx1+tan?4tanx]dx=?0?4log·{1+1?tanx1+tanx}dx=?0?4log{1+tanx+1?tanx1+tanx}dxI=?0?4log(21+tanx)dx?????(ii)Adding(i)&(ii)weget,I+I=?0?4{log(1+tanx)+log(21+tanx)}dxI=?0?4log{1+tanx_*21+tanx}dx=?0?4log2dx=[xlog2]0?4=log2[?4?0]=?4log2I=?8log2.

New question posted

4 months ago

0 Follower 1 View

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

LetI=01x(1xn)dx=01(1x)[1(1x)n]dx{0af(x)dx=0af(ax)dx}=01(1x)(11+x)ndx

=01(1x)xndx=01(xnxn+1)dx=[xn+1n+1]01[xn+1+1n+1+1]01=[1n+1n+10n+1n+1][1n+2n+20n+2n+2]=1n+11n+2=(n+2)(n+1)(n+1)(n+2)=1(n+1)(n+2)

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

LetI=28|x5|dx.{x5ifx5>0,x>5(x5)ifx5<0,x<5}=25(x5)dx+58(x5)dx=[x225x]25+[x225x]58=[(5225*5)(2225*2)]+[(8225*8)(5225*5)]=[252252+10]+[(3240252+25].=252+17+17252= 34  25= 9

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 682k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.