Maths Integrals

Get insights from 376 questions on Maths Integrals, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths Integrals

Follow Ask Question
376

Questions

0

Discussions

5

Active Users

0

Followers

New answer posted

4 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

Let =cos2xdx(sinx+cosx)2

=cos2xsin2x(sinx+cosx)2dx{?cos2x=cos2xsin2x

=(cosx+sinx)(cosxsinx)(sinx+cosx)2dx{?a2b2=(x+b)(xb)

=(cosxsinx)sinx+cosx.dx

=log|sinx+cosx|+c{f(x)f(x)dx=log|f(x)|+c

So, option B is correct.

New answer posted

4 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

Let =dxex+ex

=dxex+1ex.=exdxex·ex+1

=exdxe2x+1

Putting ex = t

exdx = dt.

=dtt2+1.

= tan- 1 t + c

= tan- 1 (ex) + c

therefore, Option A is correct.

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let I=01e23xdx

We know that,

abf(x)dx=(ba)limn1n[f(a)+f(a+h)+...+f(a(n1)h)]

Where, h=ban

Here, a=0,b=1 and f(x)e23x

h=10n=1n

01e23xdx=(10)limn1n[f(0)+f(0+h)+...+f(0+(n1)h)]

=limn1n[e2+e23x+...+e23(n1)h]=limn1n[e2{1+e3h+e6h+e9h+...+e3(n1)h}]=limn1n[e2{1(e3h)n1(e3h)}]=limn1n[e2{1e3nn1e3n}]=limn1n[e2(1e3)1e3n]=e2(e31)limn1n[1e3n1]=limn1n[e2(1e3)1e3n]=e2(e31)limn1n[1e3n1]

=e2(e31)limn(13)[3ne3n1]=e2(e31)3limn[3ne3n1]=e2(e31)3(1)=e1+e23=13(e21e)

New answer posted

4 months ago

0 Follower 1 View

V
Vishal Baghel

Contributor-Level 10

Kindly go through the solution

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let I 0π4·2tan3xdx

=20π4tan2xtanxdx

=20π4(sec2x1)tanxdx{?sec2x=tan2x+1}

=20π4sec2xtanxdx20π4tanxdx

=2I1+2[log](cosx)0π4

=2I1+2[log(cosπ4)log(cos0)]

=2I1+2(log1/√2
log1)

=2I1+2(log·2120)

I=2I1+2*(12)log2=2I1log2.____(1).

Where I1=0π4sec2xtanxdx

Let tan x = t =>sec2xdx = dt

When, x = 0, t = tan 0. = 0

x=π4,t=tanπ4=1

1=01tdt=[t22]01=120=12

So, Equation (1) becomes,

=2*12log2

=1 - log 2.

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

LHS = I=0π2sin3xdx.{sin3A=3sinA4sin3 A

=0π214(3sinxsin3x)dx.sin3A=14(3sinAsin3A)

=14[30π2sinxdx0πqsin3xdx]

=14{3[cosx]0π2[cos3x3]0π2}

=34(cosπ2+cos0)112(cos3π2+cos3*0)

=34(0+1)112(0+1)

=34112=9112=812=23

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

=11x17·cos4xdx

Here f (x) = x17 cos4x

f ( -x) = ( -x)17 cos4 ( -x)

= -x17 cos4x

= f (x)

i e, odd fxn

As aaf (x)dx=0 for odd fxn

therefore, I = 0.

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

LHS= 01xexdx=x01exdx01dxdxexdxdx

= [xex]0101exdx

= [1e10*e0] [ex]01

= (e10) (e1e0)

= e-e + e0

= e0 = 1=RHS

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let I=13dxx2(x+1).

The integrand is of the form.

1 = Ax (x + 1) + B (x + 1) + Cx2

= A (x2 + x) + B (x + 1) + Cx2

Comparing the coefficients,

A + C = 0 ____ (1)

A + B = 0 ______ (2)

B = 1 ________ (3)

Putting Equation (3) in (2),

A + 1 = 0

A = -1.

and putting value of A in Equation (1),

-1 + C = 0

C = 1

1x2(x+1)=1x+1x2+1x+1

I=13dxx2(x+1)=13dxx+13dxx2+13dxx+1

=[log|x|]13+[x2+12+1]13+[log?x+1]13

=[log3+log1][1x]13+[log|3+1|log|1+1|]

=log3+0[131]+log4log2

=log3(13)3+log22log2

=log3(2)3+2log2log2

=log2log3+23

=23+log23

Hence proved.

New answer posted

4 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

Let I = 14[|x1|+|x+2|+|x3|]dx

I = 14|x1|dx+14|x+2|dx+14|x3|dx

I = I1 + I2 + I3______(1)

So, I1 = 4 |x – 1| dx . {(x1)x1>0x>1(x1)x1<0x<1

14(x1)dx

[x22x]14=(422122)(41)

1523=1562=92.

I2 = 14|x2|dx {x2x2>0,x>2(x2)x2<0,x<2.

12(x2)dx+24(x2)dx

[x222x]12+[x222x]24

[(22212)(2*22*1)]+[(422222)(2*42*2)]

[412(42)]+[(82)(84)]

32+2+64

3+4+1282=52

 I3 = 14|x3|dx {(x3)x3>0,x>3(x3)x3<0,x<3

13(x3)dx+34(x3)dx

[x223x]13+[x223x]34

[(322122)(3·33·1)]+[(422322)(3*43*3)]

[826]+[723]

4+6+723=8+12+762=52

Hence Equation (1) becomes

I = 92+52+52

I = 192

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 682k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.