Maths Integrals

Get insights from 376 questions on Maths Integrals, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths Integrals

Follow Ask Question
376

Questions

0

Discussions

5

Active Users

0

Followers

New answer posted

4 months ago

0 Follower 1 View

V
Vishal Baghel

Contributor-Level 10

Kindly go through the solution

New answer posted

4 months ago

0 Follower 6 Views

V
Vishal Baghel

Contributor-Level 10

From (2) C = - B => C = -

12.

So, 1xx3=1x+121(1x)121(1+x)

dxxx3=dxx+12dx1x12dx1+x

= log |x| + 12 log log|1x|(1)12 log |1 + x|

12[2log|x|log|1x|log|1+x|]+ C

12[logx2log(1x)(1+x)]+ C

12log(x21x2)+ C

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let I = 0x2log4+3sinx4+3cosxdx. ______(i)

0π2log4+3sin(π2x)4+3cos(π2x)dx.

I = 0π2log4+3cosx4+3sinxdx ______(ii)

Adding (i) & (ii) we get,

2I = 0π2[log(4+3sinx4+3cosx)+log(4+3cosx4+3sinx)]dx

0π2log(4+3sinx4+3cosx*4+3sinx4+3cosinx)dx

π2 log 1 dx

π2 * 0 dx

= 0

I = 0.

?Option (C) is correct

New answer posted

4 months ago

0 Follower 1 View

V
Vishal Baghel

Contributor-Level 10

Kindly go through the solution

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Given, f(x) = f(a – x)

g(x) + g(a – x) = 4.

Let I = 0af(x)g(x)dx. ____(1)

a f(x) g (a – x)dx

I = a f(x) g(a – x)dx______(2)

Adding (1) and (2),

2I = a [f(x) g(x) + f(x) g(a + x)]dx

a f(x) [g(x) + g(a + x)]dx

2I = a f(x) 4 dx

I = 42a f(x)dx = 2 a f(x)dx.

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

I=01(x1)dx+14(x1)dx=[x2/2x]01+[x2/2x]14=5

New answer posted

4 months ago

0 Follower 1 View

V
Vishal Baghel

Contributor-Level 10

Kindly go through the solution

New answer posted

4 months ago

0 Follower 1 View

V
Vishal Baghel

Contributor-Level 10

LetI=0πlog(1+cosx)dx(i)=0πlog[1+cos(πx)]dx{?0af(x)dx=0af(ax)dx=πlog(1cosx)dx(ii)Adding(i)&(ii)2I=0π[log(1+cosx)+log(1cosx)]dx

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

LetI=0π2sinxcosx1+sinxcosxdx(i)0π2sin(π2x)(cosπ2x)1+sin(π2x)cos(π2x)dx=0π2cosxsinx1+cosxsinxdx.=0π2(sinxcosx)1+cosxsinxdx(ii)Adding(i)&(ii)weget,2I=0π2{(sinxcosx)1+sinxcosx(sinxcosx1+sinxcosx}dxI=0

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

LetI=02πcos5xdx=20π(cosx)5dxHeref(x)=cos5xSo,  f(2*πx)=cos5(2πx)=cos5x.And 2af(x)dx=0if,f(2ax)=f(x)

I = 2 * 0 [? cos5(π – x) = –cos5x]

I = 0.

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 682k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.