Maths Integrals

Get insights from 376 questions on Maths Integrals, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths Integrals

Follow Ask Question
376

Questions

0

Discussions

5

Active Users

0

Followers

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

LetI=55|x+2|dx=52|x+2|dx+25|x+2|dx

? |x + 2| = x + 2 if if x + 2 > 0 => x> –2

– (x + 2) if x + 2 < 0 => x< 2.

=[x222x]52+[x22+2x]25=[((2)22+2(2))((5)22+2(5))]+[(522+2*5)((2)22+2(2))]=[24252+10]+[252+102+4]=8+252+252+12==8+25+12=29.

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let,I=0π2cos5xdxsin5x+cos5x(i)=0π2cos5(π2x)sin5(π2x)+cos5(π2x)dxI=0π2sin5xcos5x+sin5xdx(ii)

Adding(i)&(ii)weget,2I=0π2{cos5xsin5x+cos5x+sin5xcos5x+sin5x}dx=0π2cos5x+sin5xsin5x+cos3xdx=0π2dx=π2I=π4.

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let,I=0π2sin32xsin32x+cos32xdx(i)=0π2sin32(π2x)sin32(π2x)+cos32(π2x)dx=0π2cos32xcos32x+sin32xdx(ii)(i)+(ii)2I=0π2{sin32xsin32x+cos32x+cos32xcos32x+sin32x}dx=0π2{sin32x+cos32xsin32x+cos32x}dx2I=0π2dx=π2I=π/4

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Kindly go through the solution

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

LetI=0π2cos2xdx·(i)

=0π2cos2(π2x)dx{?0af(x)=0af(ax)dx.I=0π2sin2xdx(ii)Adding(i)&(ii),2I=0π2(cos2x+sin2x)dx=0π21·dx2I=[x]0π2=π202I=π2I=π

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Given,f(x)=0xtsintdt=t0xsintdt0xdtdtsintdtdt=[t(cost)]0x0x(cost)dt=[xcosx0cos0]+[sint]0x=xcosx+[sinxsin0]=xcosx+sinxf'(x)=ddx(xcosx+sinx)=xddxcosxcosxdxdx+ddxsinx=x(sinx)cosx+sinx=xsinx

? Option (B) is correct.

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let,I=1/31(xx3)1/3x4dx=1/31[x3(1x21)x4]1/3dx=1/31x(1x21)1/3x4dx=1/31(1x21)1/3x3dx=1/31(x21)1/3x3dx

= 6

Option A is correct

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let=12(1x12x2)e2xdxLet,2x=tdx=dt2When,x=1,t=2*1=2x=2,t=2*2=4

So,I=24(1(t/2)1t(t2))etdt2=24(2t2t2)etdt2

=24(1t+(1)t2)etdt is in the form

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let,=11dxx2+2x+5.=11dxx2+2x+1+4=11dx(x+1)2+4=11dx(x+1)2+22.

Let x + 1 = t  dx = dt

When x = 1, t = 1 + 1 = 2

x = –1, t = –1 + 1 = 0

I =02dtt2+22=12[tan1t2]02=12[tan122tan102]=12(tan11tan10)

=12[π/4
0]=π/8

New answer posted

4 months ago

0 Follower 1 View

V
Vishal Baghel

Contributor-Level 10

Kindly go through the solution

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 682k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.