Maths
Get insights from 6.5k questions on Maths, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths
Follow Ask QuestionQuestions
Discussions
Active Users
Followers
New answer posted
2 months agoContributor-Level 10
(0.16)^log? (1/3 + 1/3² + . to ∞)
= (4/25)^log? (1/2)
= ( (5/2)? ² )^log? /? (1/2) = (5/2)^ (-2 log? /? (1/2)
= (5/2)^ (log? /? ( (1/2)? ² ) = 4
New answer posted
2 months agoContributor-Level 10
lim_ (x→0) (1/x? ) {1 - cos (x²/2) - cos (x²/4) + cos (x²/2)cos (x²/4)} = 2?
⇒ lim_ (x→0) ( (1 - cos (x²/2) (1 - cos (x²/4) / x? ) = 2?
⇒ 2? = 2? ⇒ k = 8
New answer posted
2 months agoContributor-Level 10
∴ center lies on x + y = 2 and in 1st quadrant center = (a, 2-a) where a > 0 and 2-a > 0 ⇒ 0 < a < 2
∴ circle touches x = 3 and y = 2
⇒ |3-a| = |2 - (2-a)| = radius
⇒ |3-a| = |a| ⇒ a = 3/2
∴ radius = a
⇒ Diameter = 2a = 3.
New answer posted
2 months agoContributor-Level 10
A = [ x 1 ]
[ 1 0 ]
A² = [ x 1 ] [ x 1 ] = [ x²+1 x ]
[ 1 0 ] [ 1 0 ] [ x 1 ]
A? = [ x²+1 x ] [ x²+1 x ]
[ x 1 ] [ x 1 ]
= [ (x²+1)²+x² x (x²+1)+x ]
[ x (x²+1)+x²+1 ]
a? = (x² + 1)² + x² = 109
⇒ x = ±3
a? = x² + 1 = 10
New answer posted
2 months agoContributor-Level 10
S = (2 . ¹P? - 3 . ²P? + 4 . ³P? upto 51 terms) + (1! - 2! + 3! - . upto 51 terms)
∴ [? ? P_ (n-1) = n!]
= (2! - 3! + 4! + 52!) + (1! - 2! + 3! - 4! + . . + (51)!)
= 1! + 52!
New answer posted
2 months agoContributor-Level 10
0 ≤ y ≤ x² + 1, 0 ≤ y ≤ x + 1, 1/2 ≤ x ≤ 2
Required area
= 19/24 + 5/2 = 79/24
New answer posted
2 months agoContributor-Level 10
LHL : lim_ (x→0? ) |1-x-x|/|λ-x-1| = 1/|λ-1|
RHL: lim_ (x→0? ) |1-x+x|/|λ-x+0| = 1/|λ|
For existence of limit
LHL = RHL
⇒ 1/|λ-1| = 1/|λ| ⇒ λ = 1/2
∴ L = 1/|λ| = 2
New answer posted
2 months agoContributor-Level 10
2π - (sin? ¹ (4/5) + sin? ¹ (5/13) + sin? ¹ (16/65)
= 2π - (tan? ¹ (4/3) + tan? ¹ (5/12) + tan? ¹ (16/63)
= 2π - (tan? ¹ (63/16) + tan? ¹ (16/63)
= 2π - π/2 = 3π/2
New answer posted
2 months agoContributor-Level 10
f (x) = (3x - 7)x²/³
⇒ f (x) = 3x? /³ - 7x²/³
⇒ f' (x) = 5x²/³ - 14/ (3x¹/³)
= (15x - 14) / (3x¹/³) > 0
∴ f' (x) > 0 ∀x ∈ (-∞, 0) U (14/15, ∞)
New answer posted
2 months agoContributor-Level 10
T_r+1 =? C_r (3)^ (n-r)/2) (5)^ (r/8) (n ≥ r)
Clearly r should be a multiple of 8.
∴ there are exactly 33 integral terms
Possible values of r can be
0,8,16, . . .,32 * 8
∴ least value of n = 256
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 679k Reviews
- 1800k Answers
