Maths

Get insights from 6.5k questions on Maths, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths

Follow Ask Question
6.5k

Questions

0

Discussions

14

Active Users

0

Followers

New answer posted

3 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

Circumcentre (D)  (5, α4)

(5α)2+ (α4+2)2= (5α)2+ (α46)2............... (i)

(5α4)2+ (α4+2)2.................... (ii)

(i) α4+2=± (α46)

(ii) 9 + 16 = 9 + 16

x

()α2=4α=8

ar  (ABC)=24

2S = 24

R = 5, r = Δs=2412=2

New answer posted

3 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

2cos  (x2+x6)=4x+4x

2LHS2LHS=2&RHS=2x=0onlythenLHS=2also

RHS  2

New answer posted

3 months ago

0 Follower 7 Views

P
Payal Gupta

Contributor-Level 10

m1m2=1, for square a,b,c,d let

A(10(cosαsinα),10(sinα+cosα))

Diagonal : (cosα - sinα)x + (sinα + cosα)y = 10

BD (diagonal)

Dist. Of BD from A is

|10(cosαsinα)2+10(sinα+cosα)210|2=a2

102=a2a=10

Also, a2 + 11a + 3 (m12+m22)=220

210 + 3 (cm12+m22)=220

m12+m22=103

Also, m1 m2 = -1

m21m2=103

or 3,13

m = 3,13

m4103m2+1=0m2=103±100942103±832=3,13

m = ±3,±13

Diagonal AC:

(sinα+cosα)x(cosαsinα)y

=10 cos2α - 10cos2α = 0

Slope of AC = sinα+cosαcosαsinα=tanα+11tanα=tan(α+π4)α=30°

FIGURE

? = 72(116+916)+10030+13=72016+83=128

New answer posted

3 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

 dydx+(2x2+11x+13x3+6x2+11x+6)y=x+3x+1,x>1

IF = epdx=(x+1)2(x+2)x+3

Pdx=2x2+11x+13x3+6x2+11x+6dn=(2x+1+1x+21x+3)dx

=ln((x+1)2(x+2)/(x+3))

2x2+11x+13(x+1)(x+2)(x+3)=Ax+1+Bx+2+Cx+3

2x2+11x+13=A(x+2)(x+3)+B(x+1)(x+3)+C(x+1)(x+2)

x = -1

⇒ 4 = 2A ⇒ A = 2

x = -2

⇒ -1 = -B Þ B = 1

x2 – 3 ⇒ -2 = 2c

c = -1

y(x+1)2(x+2)x+3=x+3x+1(x+1)2(x+2)x+3dx

(x+1)(x+2)dx

x33+3x22+2x+c

(0,1)123=c

x = 1 y(3)=13+32+2+23=32+3=92

y = 32

New answer posted

3 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

dydx=x+y2xy

Let x – 1 = X, y – 1 = Y

then DE: dYdX=X+YXY=1+YX1YX

Put y = vx

then dYdX=V+XdVdX

V + XdVdX=1+V1V

XdVdX=1+V1VV

=1+V21V

1V1+V2dV=dXX

V1V2+1dV+dXX=0

12ln|V2+1|tan1V+ln|X|=c

lnV2+1Xtan1V=c

ln(1+(Y1X)2|X1|)tan1Y1X1=c

(2,1)ln(1+01)0=c

c = 0

ln(X1)2+(Y1)2=tan1Y1X1

point (k + 1, 2) lnk2+1=tan11k

12ln(k2+1)=tan11k

New answer posted

3 months ago

0 Follower 9 Views

P
Payal Gupta

Contributor-Level 10

I(x) = sec2x2022sin2022xdx

=sin2022xsec2xdx2022sin2022xdx

=sin2022xtanx(2022)sin2023xcosxtanxdx2022sin2022xdx

=tanxsin2022x+2022sin20222022sin2022xdx

I(x) = tanxsin2022x+c

Given, I(π4)=21011

21011=1(12)2022+cc=0

I(x)=tanxsin2022x,I(π3)=3(32)=22022(3)2021

New answer posted

3 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

r = 1 2 0 ( r 2 + 1 ) r !  

tr = (r2 + 1)r!

= r2r! + r!

= r(r + 1 – 1)r! + r!

= r(r + 1)! – (r – 1)r!

= Vr – Vr-1

  r = 1 2 0 ( V r V r 1 )              

= V1 – V0

+V2V1

+V3V2

+V20V19

+V20V19

=V20V0=20(21!)0

(222)(21!)=22!2(21!)        

New answer posted

3 months ago

0 Follower 4 Views

P
Payal Gupta

Contributor-Level 10

a0 = 0, a1 = 0

an+2 = 3an+1 – 2an + 1

a25 a23 – 2a25a22 – a23a24 + 4a22a24 =?

a2 = 3a1 – 2a0 + 1

a3 = 3a2 – 2a1 + 1

a4 = 3a3 – 2a2 + 1

a5 = 3a4 – 2a3 + 1

an+2  = 3an+1 – 2an + 1

( + ) ( a 2 + a 3 + a 4 + . . . . + a n + 1 + a n + 2 )                

⇒ an+2 = 2 (a2 + a3 + …. + an + an+1) –2 (a1 + a2 + ….+ an) + n + 1

an+2 = 2an+1 + n + 1

a25 a23 -2a25 a22 -a23 a24 + 4a22 a24

= a25 (a23 – 2a22) -2a24 (a23 – 2a22)

As an+2 = 2an+1 + n + 1

⇒ an+2 – 2an+1 = n + 1

⇒ an+1 -2an = n

⇒ 24 * 22 = 528

New answer posted

3 months ago

0 Follower 6 Views

P
Payal Gupta

Contributor-Level 10

y = 2x |3x25x+2|,0x1

={3x2+7x2,3x23x+2,0x2323<x1

3x2 – 5x + 2 = 0

x=+5±25246

5+16=1,23

3x2 – 7x + 3 = 0

x = 7±49396=7±136

3x2+7x2

7±49246=7+56=2,13

3x2 + 7x – 2 = 1

3x2 – 7x + 1 = 0

x = 7±49126=7±376

I = 06((2)+1)dx+737613((1)+1)dx+137136(0+1)dx+713623(1+1)dx+231(1+1)dx

=37+1346

New question posted

3 months ago

0 Follower 2 Views

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 679k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.