Maths

Get insights from 6.5k questions on Maths, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths

Follow Ask Question
6.5k

Questions

0

Discussions

14

Active Users

0

Followers

New answer posted

4 months ago

0 Follower 10 Views

V
Vishal Baghel

Contributor-Level 10

This is a Long Answer Type Questions as classified in NCERT Exemplar
Sol:

Thegivenexpressionis(+1)n = ( 2 1 / 3 + 1 3 1 / 3 ) n G e n e r a l T e r m   T r + 1 = C r n x n r y r T 7 = T 6 + 1 = C 6 n ( 2 1 3 ) n 6 ( 1 3 1 3 ) 6 = C 6 n ( 2 ) n 6 3 . ( 1 3 2 ) = C 6 n ( 2 ) n 6 3 . ( 3 ) 2 7 t h t e r m f r o m t h e e n d = ( n 7 + 2 ) t h t e r m f r o m t h e b e g i n n i n g = ( n 5 ) t h t e r m f r o m t h e b e g i n n i n g S o , T n 6 + 1 = C n 6 n ( 2 1 3 ) n n + 6 ( 1 3 1 3 ) n 6 = C n 6 n ( 2 ) 2 . ( 1 3 n 6 3 ) = C n 6 n ( 2 ) 2 . ( 3 ) 6 n 3 A c c o r d i n g t o t h e q u e s t i o n , w e g e t C 6 n ( 2 ) n 6 3 . ( 3 ) 2 C n 6 n ( 2 ) 2 . ( 3 ) 6 n 3 = 1 6 C n 6 n ( 2 ) n 6 3 . ( 3 ) 2 C n 6 n ( 2 ) 2 . ( 3 ) 6 n 3 = 1 6 ( 2 ) n 6 3 2 . ( 3 ) 2 6 n 3 = 1 6 ( 2 ) n 6 6 3 . ( 3 ) 6 6 + n 3 = 1 6 ( 2 ) n 1 2 3 . ( 3 ) n 1 2 3 = ( 6 ) 1 ( 6 ) n 1 2 3 = ( 6 ) 1 n 1 2 3 = 1 n 1 2 = 3 n = 1 2 3 = 9 H e n c e , t h e r e q u i r e d v a l u e o f n i s 9 .

New answer posted

4 months ago

0 Follower 4 Views

P
Payal Gupta

Contributor-Level 10

This is a long answer type question as classified in NCERT Exemplar

T o t a l n u m b e r o f m a r b l e s = 6 w h i t e + 5 r e d = 1 1 m a r b l e s (i)Since,wehavetodraw4marblesofanycolourfromthe11marbles Requirednumberofways=C411 ( i i ) I f 2 m u s t b e w h i t e a n d 2 m u s t b e r e d , t h e n t h e r e q u i r e d n u m b e r o f w a y s = C 2 6 * C 2 5 ( i i i ) I f a l l t h e 4 m a r b l e s a r e o f t h e s a m e c o l o u r , t h e n t h e r e q u i r e d n u m b e r o f w a y s = C 4 6 + C 4 5 H e n c e , t h e r e q u i r e d n u m b e r o f w a y s a r e ( i ) C 4 1 1 ( i i ) C 2 6 * C 2 5 ( i i i ) C 4 6 + C 4 5

New answer posted

4 months ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

 

  T h e s i d e o f t h e f i r s t e q u i l a t e r a l Δ A B C = 2 0 c m Byjoiningthemidpointsofthesidesofthistriangle,wegetthesecondequilateraltriangle w h i c h e a c h s i d e = 2 0 2 = 1 0 c m [ ?Thelinejoiningthemid-pointsoftwosidesofatriangle i s 1 2 a n d p a r a l l e l t o t h e t h i r d s i d e o f t h e t r i a n g l e ] S i m i l a r l y , e a c h s i d e o f t h e t h i r d e q u i l a t e r a l t r i a n g l e = 1 0 2 = 5 c m P e r i m e t e r o f f i r s t t r i a n g l e = 2 0 * 3 = 6 0 c m Perimeterofsecondtriangle=10*3=30cm a n d t h e p e r i m e t e r o f t h i r d t r i a n g l e = 5 * 3 = 1 5 c m T h e r e f o r e , t h e s e r i e s w i l l b e 6 0 , 3 0 , 1 5 , w h i c h i s G . P . i n w h i c h a = 6 0 , a n d r = 3 0 6 0 = 1 2 N o w , w e h a v e t o f i n d t h e p e r i m e t e r o f s i x t h i n s c r i b e d e q u i l a t e r a l t r i a n g l e a 6 = a r 6 1 = 6 0 * ( 1 2 ) 5 = 6 0 * 1 3 2 = 1 5 8 c m H e n c e , t h e r e q u i r e d p e r i m e t e r = 1 5 8 c m

New answer posted

4 months ago

0 Follower 14 Views

P
Payal Gupta

Contributor-Level 10

This is a long answer type question as classified in NCERT Exemplar

Giventhat18micewereplacedequallyintwoexperimentalgroupsand o n e c o n t r o l g r o u p i . e . 3 g r o u p s T h e r e q u i r e d n u m b e r o f a r r a n g e m e n t s = T o t a l a r r a n g e m e n t s E q u a l l y l i k e l y a r r a n g e m e n t s = 1 8 ! 6 ! 6 ! 6 ! = 1 8 ! ( 6 ! ) 3 H e n c e , t h e r e q u i r e d a r r a n g e m e n t s = 1 8 ! ( 6 ! ) 3

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Since,thesumofallinterioranglesofapolygonofnsides=(2n4)*900 Sumofinterioranglesofapolygonof3sides=(2*34)*900=1800 Sumofinterioranglesofapolygonof4sides=(2*44)*900=3600 Similarly,thesumofinterioranglesofapolygonofsides5,6,7,are5400,7200,9000, T h e r e f o r e , t h e s e r i e s w i l l b e 1 8 0 0 , 3 6 0 0 , 5 4 0 0 , 7 2 0 0 , 9 0 0 0 , w h i c h i s A . P . H e r e a = 1 8 0 0 , d = 1 8 0 0 Wehavetofindthesumofallinterioranglesofapolygonof21sidesi.e.,19thterm a n = a + ( n 1 ) d a 1 9 = 1 8 0 0 + ( 1 9 1 ) 1 8 0 0 = 1 8 0 0 + 1 8 * 1 8 0 0 = 1 8 0 0 + 3 2 4 0 0 = 3 4 2 0 0 Hence,therequiredsumofinteriorangles=34200.

New answer posted

4 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

This is a Long Answer Type Questions as classified in NCERT Exemplar
Sol:

Givenexpressionis(x1x)2n N u m b e r o f t e r m s = 2 n + 1 = 9 ( o d d ) M i d d l e t e r m ( n + 1 2 ) t h t e r m = 2 n + 1 + 1 2 = ( n + 1 ) t h t e r m . G e n e r a l T e r m   T r + 1 = C r n x n r y r T n + 1 = C n 2 n ( x ) 2 n n ( 1 x ) n = C n 2 n ( x ) n ( 1 ) n . 1 x n = ( 1 ) n . C n 2 n = ( 1 ) n . 2 n ! n ! ( 2 n n ) ! = ( 1 ) n . 2 n ! n ! n ! = ( 1 ) n . 2 n ( 2 n 1 ) ( 2 n 2 ) ( 2 n 3 ) 1 n ! n ( n 1 ) ( n 2 ) ( n 3 ) 1 = ( 1 ) n . 2 n ( 2 n 1 ) . 2 ( n 1 ) ( 2 n 3 ) 1 n ! n ( n 1 ) ( n 2 ) ( n 3 ) 1 = ( 1 ) n . 2 n . [ n ( n 1 ) ( n 1 ) ] . [ ( 2 n 1 ) . ( 2 n 3 ) 5 . 3 . 1 ] n ! . n ( n 1 ) ( n 2 ) 1 = ( 2 ) n [ ( 2 n 1 ) . ( 2 n 3 ) 5 . 3 . 1 ] n ! = 1 * 3 * 5 * ( 2 n 1 ) n ! * ( 2 ) n H e n c e , t h e m i d d l e t e r m = 1 * 3 * 5 * ( 2 n 1 ) n ! * ( 2 ) n

New answer posted

4 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

This is a Long Answer Type Questions as classified in NCERT Exemplar
Sol:

Givenexpressionis(P2+2)8 N u m b e r o f t e r m s = 8 + 1 = 9 ( o d d ) M i d d l e t e r m ( n + 1 2 ) t h t e r m = 9 + 1 2 = 1 0 2 = 5 t h t e r m T 5 = T 4 + 1 = C 4 8 ( P 2 ) 8 4 ( 2 ) 4 = C 4 8 P 4 2 4 * 2 4 = C 4 8 P 4 N o w C 4 8 P 4 = 1 1 2 0 8 * 7 * 6 * 5 4 * 3 * 2 * 1 . P 4 = 1 1 2 0 7 0 P 4 = 1 1 2 0 P 4 = 1 1 2 0 7 0 = 1 6 P 4 = 2 4 P = ± 2 H e n c e , t h e r e q u i r e d v a l u e o f P = ± 2 .

New answer posted

4 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

H e r e , f i r s t t e r m a = 5 a n d t h e c o m m o n d i f f e r e n c e d = 2 l e t t h e c a r p e n t e r w i l l t a k e n d a y s t o f i n i s h t h e j o b . S n = 1 9 2 S n = n 2 [ 2 a + ( n 1 ) d ] 1 9 2 = n 2 [ 2 * 5 + ( n 1 ) 2 ] 1 9 2 * 2 = n [ 1 0 + 2 n 2 ] 3 8 4 = n ( 2 n + 8 ) 3 8 4 = 2 n 2 + 8 n 2 n 2 + 8 n 3 8 4 = 0 n 2 + 4 n 1 9 2 = 0 n 2 + 1 6 n 1 2 n 1 9 2 = 0 n ( n + 1 6 ) 1 2 ( n + 1 6 ) = 0 ( n 1 2 ) ( n + 1 6 ) = 0 n = 1 2 [ ? n 1 6 ] H e n c e , t h e r e q u i r e d n u m b e r o f d a y s = 1 2 .

New answer posted

4 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

Givenexpressionis(1+x+x2+x3)11 = [ ( 1 + x ) + x 2 ( 1 + x ) ] 1 1 = [ ( 1 + x ) ( 1 + x 2 ) ] 1 1 = ( 1 + x ) 1 1 . ( 1 + x 2 ) 1 1 Expandingtheaboveexpression,weget ( C 0 1 1 + C 1 1 1 x + C 2 1 1 x 2 + C 3 1 1 x 3 + C 4 1 1 x 4 + ) . ( C 0 1 1 + C 1 1 1 x 2 + C 2 1 1 x 4 + ) = ( 1 + 1 1 x + 5 5 x 2 + 1 6 5 x 3 + 3 3 0 x 4 + ) . ( 1 + 1 1 x 2 + 5 5 x 4 + ) C o l l e c t i n g t h e t e r m s c o n t a i n i n g x 4 , w e g e t ( 5 5 + 6 0 5 + 3 3 0 ) x 4 = 9 9 0 x 4 H e n c e , t h e c o e f f i c i e n t o f x 4 = 9 9 0

New answer posted

4 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

L e t a b e t h e f i r s t t e r m a n d r b e t h e c o m m o n r a t i o o f a G . P . G i v e n t h a t a p = q a r p 1 = q ( i ) a n d a q = p a r q 1 = p ( i i ) D i v i d i n g e q n . ( i ) b y e q n . ( i i ) w e g e t , a r p 1 a r q 1 = q p r p 1 r q 1 = q p r p q = q p r = ( q p ) 1 p q P u t t i n g t h e v a l u e o f r i n e q n . ( i ) w e g e t a ( q p ) 1 p q * p 1 = q a ( q p ) p 1 p q = q a = q . ( p q ) p 1 p q N o w T p + q = a r p + q 1 = q . ( p q ) p 1 p q . ( q p ) 1 p q * ( p + q 1 ) = q . ( p q ) p 1 p q . ( q p ) p + q 1 p q = q . ( p q ) p 1 p q . ( p q ) ( p + q 1 ) p q = q . ( p q ) p 1 p q p + q 1 p q = q . ( p q ) p 1 p q + 1 p q = q . ( p q ) q p q = q . ( q p ) q p q = q q p q + 1 p q p q = q p p q p q p q = [ q p p q ] 1 p q H e n c e , t h e r e q u i r e d t e r m = [ q p p q ] 1 p q .

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 679k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.