Maths NCERT Exemplar Solutions Class 11th Chapter Nine: Overview, Questions, Preparation

Maths NCERT Exemplar Solutions Class 11th Chapter Nine 2025 ( Maths NCERT Exemplar Solutions Class 11th Chapter Nine )

alok kumar singh
Updated on Aug 26, 2025 11:30 IST

By alok kumar singh, Executive Content Operations

Table of contents
  • Sequence and Series Short Answer Type Questions
  • Sequence and Series Long Answers Type Questions
  • Sequence and Series Objective Type Questions
  • Sequence and Series Fill in the blanks Type Questions
  • Sequence and Series True or False Type Questions
  • Sequence and Series Matching Type Questions
  • JEE Mains 2020
  • JEE Mains 2025
View More
Maths NCERT Exemplar Solutions Class 11th Chapter Nine Logo

Sequence and Series Short Answer Type Questions

1. The first term of an A.P. is a , and the sum of the first p terms is zero, show that the

sum of its next q terms is a ( p + q ) q p 1 .

[Hint: Required sum = S p + q S p ]

Sol:

G i v e n t h a t a 1 = a a n d S p S u m o f n e x t q t e r m s o f t h e g i v e n A . P . = S p + q S p S p + q = p + q 2 [ 2 a + ( p + q 1 ) d ] a n d S p = p 2 [ 2 a + ( p 1 ) d ] = 0 2 a + ( p 1 ) d = 0 ( p 1 ) d = 2 a d = 2 a p 1 S u m o f n e x t q t e r m s = S p + q S p = p + q 2 [ 2 a + ( p + q 1 ) d ] 0 = p + q 2 [ 2 a + ( p + q 1 ) ( 2 a p 1 ) ] = p + q 2 [ 2 a + ( p 1 ) ( 2 a ) p 1 2 a q p 1 ] = p + q 2 [ 2 a 2 a 2 a q p 1 ] = p + q 2 ( 2 a q p 1 ) = a ( p + q ) q p 1 H e n c e , t h e r e q u i r e d s u m = a ( p + q ) q p 1

 

2. A man saved Rs 66000 in 20 years. In each succeeding year after the first year, he saved Rs 200 more than what he saved in the previous year. How much did he save in the first year?

Sol:

L e t x b e s a v e d i n f i r s t y e a r . A n n u a l i n c r e m e n t = 2 0 0 w h i c h f o r m s a n A . P . f i r s t t e r m = a a n d c o m m o n d i f f e r e n c e d = 2 0 0 n = 2 0 y e a r s S n = n 2 [ 2 a + ( n 1 ) d ] = S 2 0 = 2 0 2 [ 2 a + ( 2 0 1 ) 2 0 0 ] 6 6 0 0 0 = 1 0 [ 2 a + 3 8 0 0 ] 6 6 0 0 = 2 a + 3 8 0 0 2 a = 6 6 0 0 3 8 0 0 2 a = 2 8 0 0 a = 1 4 0 0 H e n c e , t h e m a n s a v e d 1 4 0 0 i n t h e f i r s t y e a r .

Maths NCERT Exemplar Solutions Class 11th Chapter Nine Logo

Sequence and Series Long Answers Type Questions

1. If A is the arithmetic mean and G 1 , G 2 be two geometric means between any two numbers, then prove that

2 A = G 1 2 G 2 + G 2 2 G 1

Sol:

L e t t h e t w o n u m b e r s b e x a n d y A = x + y 2 ( i ) I f G 1 a n d G 2 b e t h e g e o m e t r i c m e a n s b e t w e e n x a n d y t h e n x , G 1 , G 2 , y a r e i n G . P . t h e n y = x r 4 1 [ a n = a r n 1 ] y = x r 3 y x = r 3 r = ( y x ) 1 / 3 N o w G 1 = x r = x ( y x ) 1 / 3 [ r = ( y x ) 1 / 3 ] a n d G 2 = x r 2 = x ( y x ) 2 / 3 F r o m R H S G 1 2 G 2 + G 2 2 G 1 = x 2 ( y x ) 2 / 3 x ( y x ) 2 / 3 + x 2 ( y x ) 4 / 3 x ( y x ) 1 / 3 = x + x ( y x ) 4 3 1 3 = x + x ( y x ) = x + y = 2 A L H S [ using e q . ( i ) ] L H S = R H S H e n c e p r o v e d .

 

2. If θ 1 , θ 2 , θ 3 , . . . , θ n are in A.P., whose common difference is d , show that s e c θ 1 s e c θ 2 + s e c θ 2 s e c θ 3 + . . . + s e c θ n 1 s e c θ n = t a n θ n t a n θ 1 s i n d .

Sol:

Since θ 1 , θ 2 , θ 3 , , θ n a r e i n A . P . θ 2 θ 1 = θ 3 θ 2 = = θ n θ n 1 = d N o w w e h a v e t o p r o v e t h a t s e c θ 1 . s e c θ 2 + s e c θ 2 . s e c θ 3 + + s e c θ n 1 . s e c θ n = t a n θ n t a n θ 1 s i n d L H S . s i n d s i n d [ s e c θ 1 . s e c θ 2 + s e c θ 2 . s e c θ 3 + + s e c θ n 1 . s e c θ n ] T a k i n g o n l y s i n d [ s e c θ 1 . s e c θ 2 ] s i n d = s i n d [ 1 c o s θ 1 . 1 c o s θ 2 ] s i n d = s i n ( θ 2 θ 1 ) s i n d . 1 c o s θ 1 c o s θ 2 = 1 s i n d [ s i n θ 2 c o s θ 1 c o s θ 2 s i n θ 1 c o s θ 1 c o s θ 2 ] = 1 s i n d [ s i n θ 2 c o s θ 1 c o s θ 1 c o s θ 2 c o s θ 2 s i n θ 1 c o s θ 1 c o s θ 2 ] = 1 s i n d [ t a n θ 2 t a n θ 1 ] S i m i l a r l y , w e c a n s o l v e o t h e r t e r m s w h i c h w i l l b e 1 s i n d [ t a n θ 3 t a n θ 2 ] a n d 1 s i n d [ t a n θ 4 t a n θ 3 ] H e r e L H S = 1 s i n d [ t a n θ 2 t a n θ 1 + t a n θ 3 t a n θ 2 + + t a n θ n t a n θ n 1 ] = 1 s i n d [ t a n θ 1 + t a n θ n ] = t a n θ n t a n θ 1 s i n d R H S . L H S = R H S H e n c e p r o v e d .

Maths NCERT Exemplar Solutions Class 11th Chapter Nine Logo

Sequence and Series Objective Type Questions

1. If the sum of  terms of an A.P. is given by , then the common difference of the A.P. is

(a) 3

(b) 2

(c) 6

(d) 4

Sol:

G i v e n t h a t S n = 3 n + 2 n 2 S 1 = 3 ( 1 ) + 2 ( 1 ) 2 = 5 S 2 = 3 ( 2 ) + 2 ( 2 ) 2 = 1 4 S 1 = a 1 = 5 S 2 S 1 = a 2 = 1 4 5 = 9 C o m m o n d i f f e r e n c e d = a 2 a 1 = 9 5 = 4 H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

 

2. The third term of a G.P. is 4. The product of its first 5 terms is

(a) 4 3

(b) 4 4

(c) 4 5

(d) None of these

Sol:

G i v e n t h a t T 3 = 4 a r 3 1 = 4 [ T n = a r n 1 ] a r 2 = 4 P r o d u c t o f f i r s t 5 t e r m s = a . a r . a r 2 . a r 3 . a r 4 = a 5 r 1 0 = ( a r 2 ) 5 = ( 4 ) 5 H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Maths NCERT Exemplar Solutions Class 11th Chapter Nine Logo

Sequence and Series Fill in the blanks Type Questions

1. For a , b , c  to be in G.P., the value of a b b c is equal to .............. .

For  a , b , c   to be in G.P., the value of  a b b c  is equal to ....

Sol:

Since a , b a n d c a r e i n G . P b a = c b = r ( constant ) b = a r a n d c = b r c = a r . r = a r 2 S o , a b b c = a a r a r a r 2 = a ( 1 r ) a r ( 1 r ) = 1 r = a b = b c H e n c e , t h e c o r r e c t v a l u e o f t h e f i l l e r i s a b o r b c .

 

2. The sum of terms equidistant from the beginning and end in an A.P. is equal to ............ .

Sol:

L e t A . P b e a , a + d , a + 2 d , a + 3 d , , a + ( n 1 ) d T a k i n g f i r s t a n d l a s t t e r m a 1 + a n = a + a + ( n 1 ) d = 2 a + ( n 1 ) d T a k i n g second a n d second l a s t t e r m a 2 + a n 1 = ( a + d ) + [ a + ( n 2 ) d ] = 2 a + ( n 1 ) d = a 1 + a n T a k i n g t h i r d f r o m t h e b e g i n n i n g a n d t h i r d f r o m t h e e n d a 3 + a n 2 = ( a + 2 d ) + [ a + ( n 3 ) d ] = 2 a + ( n 1 ) d = a 1 + a n F r o m t h e a b o v e p a t t e r n , w e o b s e r v e t h a t t h e s u m o f t e r m s equidistant f r o m t h e b e g i n n i n g a n d t h e e n d i n a n A . P i s e q u a l t o t h e [ f i r s t t e r m + l a s t t e r m ] H e n c e , t h e c o r r e c t v a l u e o f t h e f i l l e r i s [ f i r s t t e r m + l a s t t e r m ] .

Maths NCERT Exemplar Solutions Class 11th Chapter Nine Logo

Sequence and Series True or False Type Questions

State whether the statements are True or False:  

1. Two sequences cannot be in both A.P. and G.P. together.

Sol:

L e t u s c o n s i d e r a G . P , a , a r a n d a r 2 I f i t i s i n A . P t h e n a r a a r 2 a r H e n c e , t h e g i v e n s t a t e m e n t i s T r u e .

 

2. Every progression is a sequence but the converse, i.e., every sequence is also a progression, need not necessarily be true.

Sol:

L e t u s c o n s i d e r a s e q u e n c e o f p r i m e n u m b e r s 2 , 3 , 5 , 7 , 1 1 , I t i s c l e a r t h a t t h i s p r o g r e s s i o n i s a s e q u e n c e b u t s e q u e n c e i s n o t a p r o g r e s s i o n b e c a u s e i t d o e s n o t f o l l o w a s p e c i f i c p a t t e r n . H e n c e , t h e g i v e n s t a t e m e n t i s T r u e .

Maths NCERT Exemplar Solutions Class 11th Chapter Nine Logo

Sequence and Series Matching Type Questions

1.

Sol:

( a ) 4 , 1 , 1 4 , 1 1 6 H e r e , a 2 a 1 = 1 4 , a 3 a 2 = 1 / 4 1 = 1 4 a n d a 4 a 3 = 1 / 1 6 1 / 4 = 1 4 H e n c e , i t i s G . P ( a ) ( i i i ) ( b ) 2 , 3 , 5 , 7 H e r e , a 2 a 1 = 3 2 = 1 a 3 a 2 = 5 3 = 2 a 2 a 1 a 3 a 2 H e n c e i t i s n o t A . P a 2 a 1 = 3 2 , a 3 a 2 = 5 3 S o , 3 2 5 3 S o , i t i s n o t G . P H e n c e , i t i s s e q u e n c e ( b ) ( i i ) ( c ) 1 3 , 8 , 3 , 2 , 7 H e r e , a 2 a 1 = 8 1 3 = 5 a 3 a 2 = 3 8 = 5 a 2 a 1 = a 3 a 2 S o , i t i s a n A . P ( c ) ( i )

 

2.

 

Sol:

( a ) 4 , 1 , 1 4 , 1 1 6 H e r e , a 2 a 1 = 1 4 , a 3 a 2 = 1 / 4 1 = 1 4 a n d a 4 a 3 = 1 / 1 6 1 / 4 = 1 4 H e n c e , i t i s G . P ( a ) ( i i i ) ( b ) 2 , 3 , 5 , 7 H e r e , a 2 a 1 = 3 2 = 1 a 3 a 2 = 5 3 = 2 a 2 a 1 a 3 a 2 H e n c e i t i s n o t A . P a 2 a 1 = 3 2 , a 3 a 2 = 5 3 S o , 3 2 5 3 S o , i t i s n o t G . P H e n c e , i t i s s e q u e n c e ( b ) ( i i ) ( c ) 1 3 , 8 , 3 , 2 , 7 H e r e , a 2 a 1 = 8 1 3 = 5 a 3 a 2 = 3 8 = 5 a 2 a 1 = a 3 a 2 S o , i t i s a n A . P ( c ) ( i )

Maths NCERT Exemplar Solutions Class 11th Chapter Nine Logo

JEE Mains 2020

JEE Mains 2020

Maths NCERT Exemplar Solutions Class 11th Chapter Nine Logo

JEE Mains 2025

JEE Mains 2025

qna

Maths NCERT Exemplar Solutions Class 11th Chapter Nine Exam

Student Forum

chatAnything you would want to ask experts?
Write here...