Maths

Get insights from 6.5k questions on Maths, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths

Follow Ask Question
6.5k

Questions

0

Discussions

14

Active Users

0

Followers

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Short answer type Questions as classified in NCERT Exemplar

Sol:

L e t I = e 6 l o g x e 5 l o g x e 4 l o g x e 3 l o g x d x I = e l o g x 6 e l o g x 5 e l o g x 4 e l o g x 3 d x = x 6 x 5 x 4 x 3 d x = x 2 ( x 4 x 3 ) x 4 x 3 d x = x 2 d x = 1 3 x 3 + C H e n c e , t h e r e q u i r e d s o l u t i o n i s 1 3 x 3 + C .

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Short answer type Questions as classified in NCERT Exemplar

Sol:

L e t I = ( x 2 + 2 ) x + 1 d x I = [ ( x 1 ) + 3 x + 1 ] d x = ( x 1 ) d x + 3 1 x + 1 d x = x 2 2 x + 3 l o g | x + 1 | + C H e n c e , t h e r e q u i r e d s o l u t i o n i s x 2 2 x + 3 l o g | x + 1 | + C .

New answer posted

4 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

This is a Short answer type Questions as classified in NCERT Exemplar

Sol:

L . H . S . = 2 x + 3 x 2 + 3 x d x P u t x 2 + 3 x = t ( 2 x + 3 ) d x = d t d t t = l o g | t | l o g | x 2 + 3 x | + C = R . H . S . L . H . S . = R . H . S . H e n c e , p r o v e d .

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Short answer type Questions as classified in NCERT Exemplar

Sol:

L.H.S.=2x12x+3dx(142x+3)dx[Dividingthenumeratorbythe denominator]1.dx412x+3dx1.dx421x+32dx1.dx21x+32dxx2log|x+32|+Cx2log|2x+32|+Cxlog|(2x+32)2|+C[?nlogm=logmn]xlog|(2x+3)2|log22+Cxlog|(2x+3)2|+C1=R.H.S.[whereC1=Clog22]L.H.S.=R.H.S.Hence,proved.

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Long answer type Questions as classified in NCERT Exemplar

Sol:

L e t I = π 4 π 4 l o g | s i n x + c o s x | d x ( i ) = π 4 π 4 l o g | s i n ( π 4 π 4 x ) + c o s ( π 4 π 4 x ) | d x [ Usingabf(x)dx=abf(a+bx)dx ] = π 4 π 4 l o g | s i n ( x ) + c o s x | d x = π 4 π 4 l o g | c o s x s i n x | d x ( i i ) A d d i n g ( i ) a n d ( i i ) 2 I = π 4 π 4 l o g | c o s x + s i n x | d x + π 4 π 4 l o g | c o s x s i n x | d x 2 I = π 4 π 4 l o g | ( c o s x + s i n x ) ( c o s x s i n x ) | d x 2 I = π 4 π 4 l o g | c o s 2 x s i n 2 x | d x 2 I = π 4 π 4 l o g c o s 2 x d x 2 I = 2 0 π 4 l o g c o s 2 x d x [ ? a a f ( x ) d x = 2 0 a f ( x ) d x i f f ( x ) = f ( x ) ] I = π 0 π 4 l o g c o s 2 x d x P u t 2 x = t d x = d t 2 W h e n x = 0 t = 0 ; w h e n x = π 4 t = π 2 I = 1 2 0 π 2 l o g c o s t d t &thi

O n a d d i n g ( i i i ) a n d ( i v ) , w e g e t 2 I = 1 2 0 π 2 ( l o g c o s t + l o g s i n t ) d t 2 I = 1 2 0 π 2 l o g s i n t c o s t d t 2 I = 1 2 0 π 2 l o g 2 s i n t c o s t d t 2 2 I = 1 2 0 π 2 ( l o g s i n 2 t l o g 2 ) d t 4 I = 0 π 2 l o g s i n 2 t d t 0 π 2 l o g 2 d t P u t 2 t = u 2 d t = d u d t = d u 2 4 I = 1 2 0 π l o g s i n u d u 0 π 2 l o g 2 d t [ Changingthelimit ] 4 I = 1 2 * 2 0 π 2 l o g s i n u d u l o g 2 [ t ] 0 π 2 4 I = 0 π 2 l o g s i n u d u l o g 2 . π 2 4 I = 2 I π 2 . l o g 2

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Long answer type Questions as classified in NCERT Exemplar

Sol:

LetI=0πxlogsinxdx(i)=0π(πx)logsin(πx)dx[0af(x)dx=0af(ax)dx]=0π(πx)logsinxdx(ii)Adding(i)and(ii)2I=0π[(πx)logsinx+xlogsinx]dx2I=0ππlogsinxdx2I=2π0π2logsinxdx[?0af(x)dx=20a/2f(x)dx]I=π0π2logsinxdx(iii)I=π0π2logsin(π2x)dxI=π0π2logcosxdx(iv)Onadding(iii)and(iv),weget2I=π0π2(logsinx+logcosx)dx2I=π0π2logsinxcosxdx2I=π0π2log2sinxcosx2dx2I=π0π2logsin2xdxπ0π2log2dxPut2x=t2dx=dtdx=dt22I=π0πlogsintdtπ.log20π21dx[Changingthe limit ]2I=Iπ.log2[x]0π2&

 

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Long answer type Questions as classified in NCERT Exemplar

Sol:

LetI=01xlogII|1+2x|Idx=[log|1+2x|.(x22)]0101(1.21+2x.x22)dx=12[x2log(1+2x)]0101(x21+2x)dx=12[log30]01(x2x/21+2x)dx=12log31201xdx+1201x1+2xdx=12log312[x22]01+12.1201(2x+11)1+2xdx=12log314[10]+14011dx140112x+1dx=12log314+14[x]0114.12[log|2x+1|]01=12log314+1418[log30]=12log318log3=38log3Hence,I=38log3.

New answer posted

4 months ago

0 Follower 1 View

A
alok kumar singh

Contributor-Level 10

This is a Long answer type Questions as classified in NCERT Exemplar

Sol:

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Long answer type Questions as classified in NCERT Exemplar

New question posted

5 months ago

0 Follower 1 View

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 679k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.