Maths NCERT Exemplar Solutions Class 12th Chapter Seven: Overview, Questions, Preparation

Maths NCERT Exemplar Solutions Class 12th Chapter Seven 2025 ( Maths NCERT Exemplar Solutions Class 12th Chapter Seven )

Vishal Baghel
Updated on Apr 11, 2025 10:03 IST

By Vishal Baghel, Executive Content Operations

Table of content
  • Integrals Long Answer Type Questions
  • Integrals Short Answer Type Questions
  • Integrals Objective Type Questions
  • Integrals Fill in the Blanks
Maths NCERT Exemplar Solutions Class 12th Chapter Seven Logo

Integrals Long Answer Type Questions

Q1. x 2 d x x 4 x 2 1 2

Q2. x 2 d x ( x 2 + a 2 ) ( x 2 + b 2 )

Sol:

L e t I = x 2 ( x 2 + a 2 ) ( x 2 + b 2 ) d x P u t x 2 = t f o r t h e p u r p o s e o f p a r t i a l f r a c t i o n . W e g e t t ( t + a 2 ) ( t + b 2 ) P u t t ( t + a 2 ) ( t + b 2 ) = A t + a 2 + B t + b 2 [ w h e r e A a n d B a r e a r b i t r a r yconstants . ] t ( t + a 2 ) ( t + b 2 ) = A ( t + b 2 ) + B ( t + a 2 ) ( t + a 2 ) ( t + b 2 ) t = A t + A b 2 + B t + B a 2 C o m p a r i n g t h e l i k e t e r m s , w e g e t A + B = 1 a n d A b 2 + B a 2 = 0 A = a 2 b 2 B a 2 b 2 B + B = 1 B ( a 2 b 2 + 1 ) = 1 B ( a 2 + b 2 b 2 ) = 1 B = b 2 b 2 a 2 a n d A = a 2 b 2 × b 2 b 2 a 2 = a 2 a 2 b 2 S o , A = a 2 a 2 b 2 a n d B = b 2 a 2 b 2 x 2 ( x 2 + a 2 ) ( x 2 + b 2 ) d x = a 2 a 2 b 2 1 x 2 + a 2 d x b 2 a 2 b 2 1 x 2 + b 2 d x = a 2 a 2 b 2 × 1 a t a n 1 x a b 2 a 2 b 2 . 1 b . t a n 1 x b = a a 2 b 2 t a n 1 x a b a 2 b 2 t a n 1 x b + C H e n c e , I = 1 a 2 b 2 [ a t a n 1 x a b t a n 1 x b ] + C .

Q&A Icon
Commonly asked questions
Q:  

 Kindly consider the following

x2dxx4x212

Q:  

x2dx(x2+a2)(x2+b2)

Q:  

Kindly consider the following

Maths NCERT Exemplar Solutions Class 12th Chapter Seven Logo

Integrals Short Answer Type Questions

Q1.  2 x 1 2 x + 3 d x = x l o g ( 2 x + 3 ) 2 + C

Sol:

L . H . S . = 2 x 1 2 x + 3 d x ( 1 4 2 x + 3 ) d x [ D i v i d i n g t h e n u m e r a t o r b y t h e  denominator ] 1 . d x 4 1 2 x + 3 d x 1 . d x 4 2 1 x + 3 2 d x 1 . d x 2 1 x + 3 2 d x x 2 l o g | x + 3 2 | + C x 2 l o g | 2 x + 3 2 | + C x l o g | ( 2 x + 3 2 ) 2 | + C [ n l o g m = l o g m n ] x l o g | ( 2 x + 3 ) 2 | l o g 2 2 + C x l o g | ( 2 x + 3 ) 2 | + C 1 = R . H . S . [ w h e r e C 1 = C l o g 2 2 ] L . H . S . = R . H . S . H e n c e , p r o v e d .

Q2.  2 x + 3 x 2 + 3 x d x = l o g x 2 + 3 x + C

Sol:

L . H . S . = 2 x + 3 x 2 + 3 x d x P u t x 2 + 3 x = t ( 2 x + 3 ) d x = d t d t t = l o g | t | l o g | x 2 + 3 x | + C = R . H . S . L . H . S . = R . H . S . H e n c e , p r o v e d .

Q&A Icon
Commonly asked questions
Q:  

Kindly consider the following

2x12x+3dx=xlog?(2x+3)2?+C

Q:  

Kindly consider the following

2x+3x2+3xdx=logx2+3x+C

Q:  

Evaluate the following: 

(x2+2)x+1dx

Maths NCERT Exemplar Solutions Class 12th Chapter Seven Logo

Integrals Objective Type Questions

Choose the correct option from given four options in each of the Exercises from 1 to 11.

Q1.       c o s 2 x c o s 2 θ c o s x c o s θ     d x  is equal to

(A)  2 ( s i n x + x c o s θ ) + C

(B)  2 ( s i n x x c o s θ ) + C

(C)  2 ( s i n x + 2 x c o s θ ) + C

(D)  2 ( s i n x 2 x c o s θ ) + C

Sol:

L e t I = c o s 2 x c o s 2 θ c o s x c o s θ     d x = ( 2 c o s 2 x 1 ) ( 2 c o s 2 θ 1 ) c o s x c o s θ     d x = 2 c o s 2 x 1 2 c o s 2 θ + 1 c o s x c o s θ     d x = 2 c o s 2 x 2 c o s 2 θ c o s x c o s θ     d x = 2 c o s 2 x c o s 2 θ c o s x c o s θ     d x = 2 ( c o s x + c o s θ ) ( c o s x c o s θ ) ( c o s x c o s θ )     d x = 2 ( c o s x + c o s θ ) d x = 2 ( s i n x + c o s θ . x ) + C H e n c e , c o r r e c t o p t i o n i s ( a ) .

Q2. d x s i n ( x a ) s i n ( x b )   i s   e q u a l   t o

(A)  s i n ( b a ) l o g |   s i n ( x a ) s i n ( x b )   | + C

(B)  c o s e c ( b a ) l o g |   s i n ( x a ) s i n ( x b )   | + C

(C)  c o s e c ( b a ) l o g |   s i n ( x a ) s i n ( x b )   | + C

(D)  s i n ( b a ) l o g |   s i n ( x a ) s i n ( x b )   | + C

Sol:

L e t I = d x s i n ( x a ) . s i n ( x b )     M u l t i p l y i n g a n d d i v i d i n g b y s i n ( b a ) = 1 s i n ( b a ) s i n ( b a ) s i n ( x a ) . s i n ( x b )     d x = 1 s i n ( b a ) s i n ( x + b x a ) s i n ( x a ) . s i n ( x b )     d x = 1 s i n ( b a ) s i n [ ( x a ) ( x b ) ] s i n ( x a ) . s i n ( x b )     d x = 1 s i n ( b a ) s i n [ ( x a ) ( x b ) ] s i n ( x a ) . s i n ( x b )     d x = 1 s i n ( b a ) s i n ( x a ) c o s ( x b ) c o s ( x a ) s i n ( x b ) s i n ( x a ) . s i n ( x b )     d x = 1 s i n ( b a ) s i n ( x a ) c o s ( x b ) s i n ( x a ) . s i n ( x b ) c o s ( x a ) s i n ( x b ) s i n ( x a ) . s i n ( x b )     d x = 1 s i n ( b a ) [ c o s ( x b ) s i n ( x b ) c o s ( x a ) s i n ( x a ) ] d x = 1 s i n ( b a ) [ c o t ( x b ) c o t ( x a ) ] d x = 1 s i n ( b a ) [ l o g s i n ( x b ) l o g s i n ( x a ) ] + C = 1 s i n ( b a ) . l o g | s i n ( x b ) s i n ( x a ) | + C I = c o s e c ( b a ) . l o g | s i n ( x b ) s i n ( x a ) | + C H e n c e , c o r r e c t o p t i o n i s ( c ) .

Q&A Icon
Commonly asked questions
Q:  

Choose the correct option from given four options in each of the Exercises from 1 to 11.

   cos2xcos2θcosxcosθ  dx is equal to

(A) 2(sinx+xcosθ)+C

(B) 2(sinxxcosθ)+C

(C) 2(sinx+2xcosθ)+C

(D) 2(sinx2xcosθ)+C

Read more
Q:  

dxsin(xa)sin(xb) is equal to

(A) sin(ba)log| sin(xa)sin(xb) |+C

(B) cosec(ba)log| sin(xa)sin(xb) |+C

(C) cosec(ba)log| sin(xa)sin(xb) |+C

(D) sin(ba)log| sin(xa)sin(xb) |+C

Q:  

Kindly consider the following

Maths NCERT Exemplar Solutions Class 12th Chapter Seven Logo

Integrals Fill in the Blanks

Q1. π 2 c o s x e s i n   x d x  is equal to _______.

Sol:

L e t I = 0 π 2 c o s x . e s i n x d x P u t s i n x = t c o s x d x = d t W h e n x = 0 t h e n t = s i n 0 = 0 ; W h e n x = π 2 t h e n t = s i n π 2 = 1 I = 0 1 e t d t = [ e t ] 0 1 = ( e 1 e 0 ) = e 1 H e n c e , I = e 1

Q2. x + 3 ( x + 4 ) 2 e x   d x  =_______.

Sol:

L e t I = x + 3 ( x + 4 ) 2 . e x   d x = x + 4 1 ( x + 4 ) 2 . e x   d x = [ x + 4 ( x + 4 ) 2 1 ( x + 4 ) 2 ] . e x   d x = [ 1 x + 4 1 ( x + 4 ) 2 ] . e x   d x P u t 1 x + 4 = t 1 ( x + 4 ) 2 d x = d t L e t f ( x ) = 1 x + 4 f ' ( x ) = 1 ( x + 4 ) 2 Using e x [ f ( x ) + f ' ( x ) ] d x = e x f ( x ) + C I = e x . 1 x + 4 + C H e n c e , I = e x x + 4 + C .

Q&A Icon
Commonly asked questions
Q:  

Kindly consider the following

Q:  

Kindly consider the following

π2cosxesin xdx is equal to _______.

Q:  

Kindly consider the following

x+3(x+4)2ex dx =_______.

qna

Maths NCERT Exemplar Solutions Class 12th Chapter Seven Exam

Student Forum

chatAnything you would want to ask experts?
Write here...