Maths NCERT Exemplar Solutions Class 12th Chapter Seven: Overview, Questions, Preparation

Maths NCERT Exemplar Solutions Class 12th Chapter Seven 2025 ( Maths NCERT Exemplar Solutions Class 12th Chapter Seven )

Vishal Baghel
Updated on Apr 11, 2025 10:03 IST

By Vishal Baghel, Executive Content Operations

Table of content
  • Integrals Long Answer Type Questions
  • Integrals Short Answer Type Questions
  • Integrals Objective Type Questions
  • Integrals Fill in the Blanks
Maths NCERT Exemplar Solutions Class 12th Chapter Seven Logo

Integrals Long Answer Type Questions

Q1. x 2 d x x 4 x 2 1 2

Q2. x 2 d x ( x 2 + a 2 ) ( x 2 + b 2 )

Sol:

L e t I = x 2 ( x 2 + a 2 ) ( x 2 + b 2 ) d x P u t x 2 = t f o r t h e p u r p o s e o f p a r t i a l f r a c t i o n . W e g e t t ( t + a 2 ) ( t + b 2 ) P u t t ( t + a 2 ) ( t + b 2 ) = A t + a 2 + B t + b 2 [ w h e r e A a n d B a r e a r b i t r a r yconstants . ] t ( t + a 2 ) ( t + b 2 ) = A ( t + b 2 ) + B ( t + a 2 ) ( t + a 2 ) ( t + b 2 ) t = A t + A b 2 + B t + B a 2 C o m p a r i n g t h e l i k e t e r m s , w e g e t A + B = 1 a n d A b 2 + B a 2 = 0 A = a 2 b 2 B a 2 b 2 B + B = 1 B ( a 2 b 2 + 1 ) = 1 B ( a 2 + b 2 b 2 ) = 1 B = b 2 b 2 a 2 a n d A = a 2 b 2 × b 2 b 2 a 2 = a 2 a 2 b 2 S o , A = a 2 a 2 b 2 a n d B = b 2 a 2 b 2 x 2 ( x 2 + a 2 ) ( x 2 + b 2 ) d x = a 2 a 2 b 2 1 x 2 + a 2 d x b 2 a 2 b 2 1 x 2 + b 2 d x = a 2 a 2 b 2 × 1 a t a n 1 x a b 2 a 2 b 2 . 1 b . t a n 1 x b = a a 2 b 2 t a n 1 x a b a 2 b 2 t a n 1 x b + C H e n c e , I = 1 a 2 b 2 [ a t a n 1 x a b t a n 1 x b ] + C .

Q&A Icon
Commonly asked questions
Q:  

 Kindly consider the following

x2dxx4x212

A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

 

Q:  

x2dx(x2+a2)(x2+b2)

A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

LetI=x2(x2+a2)(x2+b2)dxPutx2=tforthepurposeofpartialfraction.Wegett(t+a2)(t+b2)Putt(t+a2)(t+b2)=At+a2+Bt+b2[whereAandBarearbitraryconstants.]t(t+a2)(t+b2)=A(t+b2)+B(t+a2)(t+a2)(t+b2)t=At+Ab2+Bt+Ba2Comparingtheliketerms,wegetA+B=1andAb2+Ba2=0A=a2b2Ba2b2B+B=1B(a2b2+1)=1B(a2+b2b2)=1B=b2b2a2andA=a2b2×b2b2a2=a2a2b2So,A=a2a2b2andB=b2a2b2x2(x2+a2)(x2+b2)dx=a2a2b21x2+a2dxb2a2b21x2+b2dx=a2a2b2×1atan1xab2a2b2.1b.tan1xb=aa2b2tan1xaba2b2tan1xb+CHence,I=1a2b2[atan1xabtan1xb]+C.

Q:  

Kindly consider the following

A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

 

Q:  

2x1(x1)(x2)(x3)dx

A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Q:  

etan1x(1+x+x21+x2)dx

A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

LetI=etan1x(1+x+x21+x2)dxPuttan1x=t11+x2.dx=dt=et(1+tant+tan2t)dt=et(sec2t+tant)dtHere,f(t)=tantf'(t)=sec2t=et.f(t)=ettant=etan1x.x+C[?et[f(x)+f'(x)]dx=exf(x)+C]Hence,I=etan1x.x+C

Q:  

Kindly consider the following

A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Q:  

Kindly consider the following

A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Q:  

Kindly consider the following

∫√tanxdx(Hint: Put tanx=t2)

A: 

This is a Long answer type Questions as classified in NCERT Exemplar

Q:  

Kindly consider the following

A: 

This is a Long answer type Questions as classified in NCERT Exemplar

Sol:

Q:  

Kindly consider the following

A: 

This is a Long answer type Questions as classified in NCERT Exemplar

Sol:

LetI=01xlogII|1+2x|Idx=[log|1+2x|.(x22)]0101(1.21+2x.x22)dx=12[x2log(1+2x)]0101(x21+2x)dx=12[log30]01(x2x/21+2x)dx=12log31201xdx+1201x1+2xdx=12log312[x22]01+12.1201(2x+11)1+2xdx=12log314[10]+14011dx140112x+1dx=12log314+14[x]0114.12[log|2x+1|]01=12log314+1418[log30]=12log318log3=38log3Hence,I=38log3.

Q:  

Kindly consider the following

A: 

This is a Long answer type Questions as classified in NCERT Exemplar

Sol:

LetI=0πxlogsinxdx(i)=0π(πx)logsin(πx)dx[0af(x)dx=0af(ax)dx]=0π(πx)logsinxdx(ii)Adding(i)and(ii)2I=0π[(πx)logsinx+xlogsinx]dx2I=0ππlogsinxdx2I=2π0π2logsinxdx[?0af(x)dx=20a/2f(x)dx]I=π0π2logsinxdx(iii)I=π0π2logsin(π2x)dxI=π0π2logcosxdx(iv)Onadding(iii)and(iv),weget2I=π0π2(logsinx+logcosx)dx2I=π0π2logsinxcosxdx2I=π0π2log2sinxcosx2dx2I=π0π2logsin2xdxπ0π2log2dxPut2x=t2dx=dtdx=dt22I=π0πlogsintdtπ.log20π21dx[Changingthe limit ]2I=Iπ.log2[x]0π2&

 

Q:  

Kindly consider the following

A: 

This is a Long answer type Questions as classified in NCERT Exemplar

Sol:

L e t I = π 4 π 4 l o g | s i n x + c o s x | d x ( i ) = π 4 π 4 l o g | s i n ( π 4 π 4 x ) + c o s ( π 4 π 4 x ) | d x [ Usingabf(x)dx=abf(a+bx)dx ] = π 4 π 4 l o g | s i n ( x ) + c o s x | d x = π 4 π 4 l o g | c o s x s i n x | d x ( i i ) A d d i n g ( i ) a n d ( i i ) 2 I = π 4 π 4 l o g | c o s x + s i n x | d x + π 4 π 4 l o g | c o s x s i n x | d x 2 I = π 4 π 4 l o g | ( c o s x + s i n x ) ( c o s x s i n x ) | d x 2 I = π 4 π 4 l o g | c o s 2 x s i n 2 x | d x 2 I = π 4 π 4 l o g c o s 2 x d x 2 I = 2 0 π 4 l o g c o s 2 x d x [ ? a a f ( x ) d x = 2 0 a f ( x ) d x i f f ( x ) = f ( x ) ] I = π 0 π 4 l o g c o s 2 x d x P u t 2 x = t d x = d t 2 W h e n x = 0 t = 0 ; w h e n x = π 4 t = π 2 I = 1 2 0 π 2 l o g c o s t d t &thi

O n a d d i n g ( i i i ) a n d ( i v ) , w e g e t 2 I = 1 2 0 π 2 ( l o g c o s t + l o g s i n t ) d t 2 I = 1 2 0 π 2 l o g s i n t c o s t d t 2 I = 1 2 0 π 2 l o g 2 s i n t c o s t d t 2 2 I = 1 2 0 π 2 ( l o g s i n 2 t l o g 2 ) d t 4 I = 0 π 2 l o g s i n 2 t d t 0 π 2 l o g 2 d t P u t 2 t = u 2 d t = d u d t = d u 2 4 I = 1 2 0 π l o g s i n u d u 0 π 2 l o g 2 d t [ Changingthelimit ] 4 I = 1 2 × 2 0 π 2 l o g s i n u d u l o g 2 [ t ] 0 π 2 4 I = 0 π 2 l o g s i n u d u l o g 2 . π 2 4 I = 2 I π 2 . l o g 2

Maths NCERT Exemplar Solutions Class 12th Chapter Seven Logo

Integrals Short Answer Type Questions

Q1.  2 x 1 2 x + 3 d x = x l o g ( 2 x + 3 ) 2 + C

Sol:

L . H . S . = 2 x 1 2 x + 3 d x ( 1 4 2 x + 3 ) d x [ D i v i d i n g t h e n u m e r a t o r b y t h e  denominator ] 1 . d x 4 1 2 x + 3 d x 1 . d x 4 2 1 x + 3 2 d x 1 . d x 2 1 x + 3 2 d x x 2 l o g | x + 3 2 | + C x 2 l o g | 2 x + 3 2 | + C x l o g | ( 2 x + 3 2 ) 2 | + C [ n l o g m = l o g m n ] x l o g | ( 2 x + 3 ) 2 | l o g 2 2 + C x l o g | ( 2 x + 3 ) 2 | + C 1 = R . H . S . [ w h e r e C 1 = C l o g 2 2 ] L . H . S . = R . H . S . H e n c e , p r o v e d .

Q2.  2 x + 3 x 2 + 3 x d x = l o g x 2 + 3 x + C

Sol:

L . H . S . = 2 x + 3 x 2 + 3 x d x P u t x 2 + 3 x = t ( 2 x + 3 ) d x = d t d t t = l o g | t | l o g | x 2 + 3 x | + C = R . H . S . L . H . S . = R . H . S . H e n c e , p r o v e d .

Q&A Icon
Commonly asked questions
Q:  

Kindly consider the following

2x12x+3dx=xlog?(2x+3)2?+C

A: 

This is a Short answer type Questions as classified in NCERT Exemplar

Sol:

L.H.S.=2x12x+3dx(142x+3)dx[Dividingthenumeratorbythe denominator]1.dx412x+3dx1.dx421x+32dx1.dx21x+32dxx2log|x+32|+Cx2log|2x+32|+Cxlog|(2x+32)2|+C[?nlogm=logmn]xlog|(2x+3)2|log22+Cxlog|(2x+3)2|+C1=R.H.S.[whereC1=Clog22]L.H.S.=R.H.S.Hence,proved.

Q:  

Kindly consider the following

2x+3x2+3xdx=logx2+3x+C

A: 

This is a Short answer type Questions as classified in NCERT Exemplar

Sol:

L . H . S . = 2 x + 3 x 2 + 3 x d x P u t x 2 + 3 x = t ( 2 x + 3 ) d x = d t d t t = l o g | t | l o g | x 2 + 3 x | + C = R . H . S . L . H . S . = R . H . S . H e n c e , p r o v e d .

Q:  

Evaluate the following: 

(x2+2)x+1dx

A: 

This is a Short answer type Questions as classified in NCERT Exemplar

Sol:

L e t I = ( x 2 + 2 ) x + 1 d x I = [ ( x 1 ) + 3 x + 1 ] d x = ( x 1 ) d x + 3 1 x + 1 d x = x 2 2 x + 3 l o g | x + 1 | + C H e n c e , t h e r e q u i r e d s o l u t i o n i s x 2 2 x + 3 l o g | x + 1 | + C .

Q:  

Kindly consider the following

(e6logxe4logxe5logxe3logx)dx

A: 

This is a Short answer type Questions as classified in NCERT Exemplar

Sol:

L e t I = e 6 l o g x e 5 l o g x e 4 l o g x e 3 l o g x d x I = e l o g x 6 e l o g x 5 e l o g x 4 e l o g x 3 d x = x 6 x 5 x 4 x 3 d x = x 2 ( x 4 x 3 ) x 4 x 3 d x = x 2 d x = 1 3 x 3 + C H e n c e , t h e r e q u i r e d s o l u t i o n i s 1 3 x 3 + C .

Q:  

Kindly consider the following

1+cosxx+sinxdx

A: 

This is a Short answer type Questions as classified in NCERT Exemplar

Sol:

L e t I = 1 + c o s x x + s i n x d x P u t x + s i n x = t ( 1 + c o s x ) d x = d t I = d t t = l o g | t | = l o g | x + s i n x | + C H e n c e , t h e r e q u i r e d s o l u t i o n i s l o g | x + s i n x | + C .

Q:  

Kindly consider the following

dx1+cos x  

A: 

This is a Short answer type Questions as classified in NCERT Exemplar

Sol:

L e t I = d x 1 + c o s x = d x 2 c o s 2 x / 2 [ ? 1 + c o s x = 2 c o s 2 x / 2 ] = 1 2 s e c 2 x 2 d x = 1 2 . 2 t a n x 2 + C = t a n x 2 + C H e n c e , t h e r e q u i r e d s o l u t i o n i s t a n x 2 + C .

Q:  

Kindly consider the following

tan2xsec4xdx

A: 

This is a Short answer type Questions as classified in NCERT Exemplar

Sol:

L e t I = t a n 2 x . s e c 4 x d x = t a n 2 x . s e c 2 x . s e c 2 x d x = t a n 2 x . ( 1 + t a n 2 x ) . s e c 2 x d x P u t t a n x = t , s e c 2 x d x = d t I = t 2 ( 1 + t 2 ) d t = ( t 2 + t 4 ) d t = t 2 d t + t 4 d t = 1 3 t 3 + 1 5 t 5 = 1 3 t a n 3 x + 1 5 t a n 5 x + C H e n c e , t h e r e q u i r e d s o l u t i o n i s 1 3 t a n 3 x + 1 5 t a n 5 x + C .

Q:  

Kindly consider the following

A: 

This is a Short answer type Questions as classified in NCERT Exemplar

Q:  

Kindly consider the following

 √1+sinxdx

A: 

This is a Short answer type Questions as classified in NCERT Exemplar

Q:  

Kindly consider the following

A: 

This is a Short answer type Questions as classified in NCERT Exemplar

Q:  

Kindly consider the following

A: 

This is a Short answer type Questions as classified in NCERT Exemplar

Q:  

Kindly consider the following

x121+x34dx(x=z4)

A: 

This is a Short answer type Questions as classified in NCERT Exemplar

Sol:

L e t I = x 1 / 2 1 + x 3 / 4 d x P u t x = t 4 d x = 4 t 3 d t = t 2 . 4 t 3 1 + t 3 d t = 4 t 5 1 + t 3 d t = 4 ( t 2 t 2 t 3 + 1 ) d t = 4 t 2 d t 4 t 2 t 3 + 1 d t L e t I = I 1 I 2 N o w I 1 = 4 t 2 d t = 4 . t 3 3 + C 1 = 4 3 x 3 / 4 + C 1 a n d I 2 = 4 t 2 t 3 + 1 d t P u t t 3 + 1 = z 3 t 2 d t = d z t 2 d t = 1 3 d z I 2 = 4 3 d z z = 4 3 l o g | z | + C 2 = 4 3 l o g | t 3 + 1 | + C 2 = 4 3 l o g | ( x ) 3 / 4 + 1 | + C 2 I = I 1 I 2 = 4 3 x 3 / 4 + C 1 4 3 l o g | ( x ) 3 / 4 + 1 | C 2 I = 4 3 x 3 / 4 4 3 l o g | ( x ) 3 / 4 + 1 | + C 1 C 2 H e n c e , I = 4 3 [ x 3 / 4 l o g | ( x ) 3 / 4 + 1 | ] + C . [ ? C 1 C 2 = C ]

Q:  

Kindly consider the following

A: 

This is a Short answer type Questions as classified in NCERT Exemplar

Q:  

Kindly consider the following

A: 

This is a Short answer type Questions as classified in NCERT Exemplar

Q:  

Kindly consider the following

A: 

This is a Short answer type Questions as classified in NCERT Exemplar

Q:  

Kindly consider the following

A: 

This is a Short answer type Questions as classified in NCERT Exemplar

Q:  

Kindly consider the following

A: 

This is a Short answer type Questions as classified in NCERT Exemplar

Q:  

Kindly consider the following

xx41dx

A: 

This is a Short answer type Questions as classified in NCERT Exemplar

Sol:

LetI=xx41dxPutx2=t2xdx=dtxdx=dt2=12dtt21=12dtt2(1)2=12.12.1log|t1t+1|+C[?12dtx2a2=12alog|xax+a|+C]=14log|x21x2+1|+CHence,I=14log|x21x2+1|+C.

Q:  

Kindly consider the following

x21x4dx(x2=t)

A: 

This is a Short answer type Questions as classified in NCERT Exemplar

Sol:

LetI=x21x4dx=x2(1x2)(1+x2)dxPutx2=tforthepurposeofpartialfractions.Wegett(1t)(1+t) Resolvingintopartialfractionsweputt(1t)(1+t)=A1t+B1+t[WhereAandBarearbitary]t(1t)(1+t)=A(1+t)+B(1t)(1t)(1+t)t=A+At+BBtComparingtheliketerms,wegetAB=1andA+B=0Solvingtheaboveequations,wehaveA=12andB=12I=121x2dx+121+x2dx[Puttingt=x2]=12.12.1log|1+x1x|12tan1x+C=14log|1+x1x|12tan1x+CHence,I=14log|1+x1x|12tan1x+C.

Q:  

Kindly consider the following

A: 

This is a Short answer type Questions as classified in NCERT Exemplar

Q:  

Kindly consider the following

sin1(1x2)32dx

A: 

This is a Short answer type Questions as classified in NCERT Exemplar

Q:  

Kindly consider the following

(cos5x+cos4x12cos3xdx

A: 

This is a Short answer type Questions as classified in NCERT Exemplar

Sol:

L e t I = c o s 5 x + c o s 4 x 1 2 c o s 3 x d x I = 2 c o s 5 x + 4 x 2 . c o s 5 x 4 x 2 1 2 ( c o s 2 3 x 2 1 ) d x = 2 c o s 9 x 2 . c o s x 2 1 4 c o s 2 3 x 2 + 2 d x = 2 c o s 9 x 2 . c o s x 2 3 4 c o s 2 3 x 2 d x = 2 c o s 9 x 2 . c o s x 2 4 c o s 2 3 x 2 3 d x = 2 c o s 9 x 2 . c o s x 2 . c o s 3 x 2 4 c o s 3 3 x 2 3 c o s 3 x 2 d x [ M u l t i p l y i n g a n d d i v i d i n g b y c o s 3 x 2 ] = 2 c o s 9 x 2 . c o s x 2 . c o s 3 x 2 c o s 3 . 3 x 2 d x [ ? c o s 3 x = 4 c o s 3 x 3 c o s x ] = 2 c o s 9 x 2 . c o s x 2 . c o s 3 x 2 c o s 9 x 2 d x = 2 c o s 3 x 2 . c o s x 2 d x = [ c o s ( 3 x 2 + x 2 ) + c o s ( 3 x 2 x 2 ) ] d x = ( c o s 2 x + c o s x ) d x [ ? 2 c o s A c o s B = c o s ( A + B ) + c o s ( A B ) ] = c o s 2 x d x c o s x d x = 1 2 s i n 2 x s i n x + C H e n c e , I = [ 1 2 s i n 2 x + s i n x ] + C

Q:  

Kindly consider the following

sin6x+cos6xsin2x+cos2xdx

A: 

This is a Short answer type Questions as classified in NCERT Exemplar

Sol:

L e t I = s i n 6 x + c o s 6 x s i n 2 x . c o s 2 x d x I = ( s i n 2 x + c o s 2 x ) 3 3 s i n 2 x c o s 2 x ( s i n 2 x + c o s 2 x ) s i n 2 x . c o s 2 x d x [ ? a 3 + b 3 = ( a + b ) 3 3 a b ( a + b ) ] = ( 1 ) 3 3 s i n 2 x c o s 2 x . ( 1 ) s i n 2 x . c o s 2 x d x = 1 3 s i n 2 x c o s 2 x s i n 2 x . c o s 2 x d x = ( 1 s i n 2 x . c o s 2 x 3 s i n 2 x c o s 2 x s i n 2 x . c o s 2 x ) d x = ( 1 s i n 2 x . c o s 2 x 3 ) d x = ( s i n 2 x + c o s 2 x s i n 2 x . c o s 2 x 3 ) d x = [ ( 1 c o s 2 x + 1 s i n 2 x ) 3 ] d x = ( s e c 2 x + c o s e c 2 x 3 ) d x = s e c 2 x d x + c o s e c 2 x d x 3 1 d x = t a n x c o t x 3 x + C H e n c e , I = t a n x c o t x 3 x + C .

Q:  

Kindly consider the following

A: 

This is a Short answer type Questions as classified in NCERT Exemplar

Q:  

Kindly consider the following

(cosxcos2x)1cosxdx

A: 

This is a Short answer type Questions as classified in NCERT Exemplar

Sol:

L e t I = c o s x c o s 2 x 1 c o s x d x I = 2 s i n x + 2 x 2 . s i n 2 x x 2 2 s i n 2 x 2 d x [ ? c o s C c o s D = 2 s i n C + D 2 . s i n D C 2 ] = 2 s i n 3 x 2 . s i n x 2 2 s i n 2 x 2 d x = s i n 3 x 2 s i n x 2 d x = s i n 3 ( x 2 ) s i n ( x 2 ) d x = 3 s i n x 2 4 s i n 3 x 2 s i n x 2 d x [ s i n 3 x = 3 s i n x 4 s i n 3 x ] = s i n x 2 ( 3 4 s i n 2 x 2 ) s i n x 2 d x = ( 3 4 s i n 2 x 2 ) d x = [ 3 2 ( 1 c o s x ) ] d x [ ? 2 s i n 2 x 2 = 1 c o s x ] = ( 3 2 + 2 c o s x ) d x = ( 1 + 2 c o s x ) d x = x + 2 s i n x + C H e n c e , I = x + 2 s i n x + C .

Q:  

Kindly consider the following

A: 

This is a Short answer type Questions as classified in NCERT Exemplar

Q:  

Evaluate the following as the limit of sums

2(x2+3)dx

A: 

This is a Short answer type Questions as classified in NCERT Exemplar

Sol:

LetI=02(x2+3)dx Using theformula,abf(x)dx=limh0h[f(a)+f(a+h)+f(a+2h)++f(a+n1¯h)]whereh=banHere,a=0andb=2h=20nnh=2Here,f(x)=x2+3f(0)=02+3=0+3=3f(0+h)=(0+h)2+3=h2+3f(0+2h)=(0+2h)2+3=4h2+3=3f(0+n1¯h)=(0+n1¯h)2+3(n1)2h2+3Now,02(x2+3)dx=limh0h[3+h2+3+4h2+3++(n1)2h2+3]=limh0h[(3+3+3++n)+{h2+4h2++(n1)2h2}]=limh0h[3n+h2{1+4++(n1)2}]=limh0h[3n+h2n(n1)(2n1)6][?1+4+9++(n1)2=n(n1)(2n1)6]=limh0[3nh+h3n(n1)(2n1)6]=limh0[3nh+nh(nhh)(2nhh)6]=[3×2+2(20)(2×20)6][?nh=2andh=0]=[6+2×2×46]=6+83=263Hence,02(x2+3)dx=26

Q:  

Kindly consider the following

2exdx

A: 

This is a Short answer type Questions as classified in NCERT Exemplar

Sol:

L e t I = 0 2 e x d x Usingtheformula, a b f ( x ) d x = l i m h 0 h [ f ( a ) + f ( a + h ) + f ( a + 2 h ) + + f ( a + n 1 ¯ h ) ] w h e r e h = b a n H e r e , a = 0 a n d b = 2 h = 2 0 n n h = 2 H e r e , f ( x ) = e x f ( 0 ) = e 0 = 1 f ( 0 + h ) = e 0 + h = e h f ( 0 + 2 h ) = e 0 + 2 h = e 2 h f ( 0 + n 1 ¯ h ) = e 0 + ( n 1 ) h = e ( n 1 ) h N o w , 0 2 e x d x = l i m h 0 h [ 1 + e h + e 2 h + + e ( n 1 ) h ] = l i m h 0 h [ 1 ( e n h 1 ) e h 1 ] [ ? a + a r + a r 2 + + a r n 1 = a ( r n 1 ) r 1 ] = l i m h 0 e n h 1 e h 1 h = e 2 1 1 = e 2 1 [ ? l i m x 0 e x 1 x = 1 ] H e n c e , 0 2 e 2 d x = e 2 1 .

Q:  

Evaluate the following

1(dxex+ex)dx

A: 

This is a Short answer type Questions as classified in NCERT Exemplar

Sol:

L e t I = 0 1 d x e x + e x = 0 1 d x e x + 1 e x = 0 1 d x e 2 x + 1 e x = 0 1 e x d x e 2 x + 1 P u t e x = t e x d x = d t C h a n g i n g t h e l i m i t s , w e h a v e W h e n x = 0 t = e 0 = 1 W h e n x = 1 t = e 1 = e I = 1 e d t t 2 + 1 = [ t a n 1 t ] 1 e = [ t a n 1 e t a n 1 ( 1 ) ] = t a n 1 e π 4 H e n c e , I = t a n 1 e π 4 .

Q:  

Kindly consider the following

π2(tanx dx1+m2tan2x)

A: 

This is a Short answer type Questions as classified in NCERT Exemplar

Sol:

L e t I = 0 π 2 t a n x 1 + m 2 t a n 2 x d x I = 0 π 2 s i n x c o s x 1 + m 2 s i n 2 x c o s 2 x d x = 0 π 2 s i n x c o s x c o s 2 x + m 2 s i n 2 x c o s 2 x d x = 0 π 2 s i n x c o s x c o s 2 x + m 2 s i n 2 x d x = 0 π 2 s i n x c o s x 1 s i n 2 x + m 2 s i n 2 x d x = 0 π 2 s i n x c o s x 1 s i n 2 x + ( 1 m 2 ) d x P u t s i n 2 x = t 2 s i n x c o s x d x = d t s i n x c o s x d x = d t 2 Changingthelimitsweget, W h e n x = 0 t = s i n 2 0 = 0 ; w h e n x = π 2 t = s i n 2 π 2 = 1 I = 1 2 0 1 d t 1 + ( m 2 1 ) t = 1 2 [ l o g [ 1 + ( m 2 1 ) t ] m 2 1 ] 0 1 = 1 2 ( m 2 1 ) [ l o g ( 1 + m 2 1 ) l o g ( 1 ) ] = l o g | m 2 | 2 ( m 2 1 ) H e n c e , I = l o g | m 2 | 2 ( m 2 1 ) = l o g | m | m 2 1 .

Q:  

Kindly consider the following

A: 

This is a Short answer type Questions as classified in NCERT Exemplar

Q:  

Kindly consider the following

A: 

This is a Short answer type Questions as classified in NCERT Exemplar

Q:  

Kindly consider the following

πx sin x cos2xdx

A: 

This is a Short answer type Questions as classified in NCERT Exemplar

Sol:

L e t I = 0 π x s i n x c o s 2 x d x ( i ) = 0 π ( π x ) s i n ( π x ) c o s 2 ( π x ) d x = 0 π ( π x ) s i n x c o s 2 x d x ( i i ) A d d i n g ( i ) a n d ( i i ) w e g e t , 2 I = 0 π [ x s i n x c o s 2 x + ( π x ) s i n x c o s 2 x ] d x 2 I = 0 π [ s i n x c o s 2 x . ( x + π x ) ] d x 2 I = 0 π π s i n x c o s 2 x d x = π 0 π s i n x c o s 2 x d x P u t c o s x = t s i n x d x = d t s i n x d x = d t Changingthelimitsweget, W h e n x = 0 , t = c o s 0 = 1 w h e n x = π , t = c o s π = 1 2 I = π 1 1 t 2 d t = π 1 1 t 2 d t 2 I = π 1 1 t 2 d t [ ? a b f ( x ) d x = b a f ( x ) d x ] 2 I = π [ t 3 3 ] 1 1 = π [ 1 3 + 1 3 ] = π ( 2 3 ) I = π 3

Q:  

Kindly consider the following

A: 

This is a Short answer type Questions as classified in NCERT Exemplar

Maths NCERT Exemplar Solutions Class 12th Chapter Seven Logo

Integrals Objective Type Questions

Choose the correct option from given four options in each of the Exercises from 1 to 11.

Q1.       c o s 2 x c o s 2 θ c o s x c o s θ     d x  is equal to

(A)  2 ( s i n x + x c o s θ ) + C

(B)  2 ( s i n x x c o s θ ) + C

(C)  2 ( s i n x + 2 x c o s θ ) + C

(D)  2 ( s i n x 2 x c o s θ ) + C

Sol:

L e t I = c o s 2 x c o s 2 θ c o s x c o s θ     d x = ( 2 c o s 2 x 1 ) ( 2 c o s 2 θ 1 ) c o s x c o s θ     d x = 2 c o s 2 x 1 2 c o s 2 θ + 1 c o s x c o s θ     d x = 2 c o s 2 x 2 c o s 2 θ c o s x c o s θ     d x = 2 c o s 2 x c o s 2 θ c o s x c o s θ     d x = 2 ( c o s x + c o s θ ) ( c o s x c o s θ ) ( c o s x c o s θ )     d x = 2 ( c o s x + c o s θ ) d x = 2 ( s i n x + c o s θ . x ) + C H e n c e , c o r r e c t o p t i o n i s ( a ) .

Q2. d x s i n ( x a ) s i n ( x b )   i s   e q u a l   t o

(A)  s i n ( b a ) l o g |   s i n ( x a ) s i n ( x b )   | + C

(B)  c o s e c ( b a ) l o g |   s i n ( x a ) s i n ( x b )   | + C

(C)  c o s e c ( b a ) l o g |   s i n ( x a ) s i n ( x b )   | + C

(D)  s i n ( b a ) l o g |   s i n ( x a ) s i n ( x b )   | + C

Sol:

L e t I = d x s i n ( x a ) . s i n ( x b )     M u l t i p l y i n g a n d d i v i d i n g b y s i n ( b a ) = 1 s i n ( b a ) s i n ( b a ) s i n ( x a ) . s i n ( x b )     d x = 1 s i n ( b a ) s i n ( x + b x a ) s i n ( x a ) . s i n ( x b )     d x = 1 s i n ( b a ) s i n [ ( x a ) ( x b ) ] s i n ( x a ) . s i n ( x b )     d x = 1 s i n ( b a ) s i n [ ( x a ) ( x b ) ] s i n ( x a ) . s i n ( x b )     d x = 1 s i n ( b a ) s i n ( x a ) c o s ( x b ) c o s ( x a ) s i n ( x b ) s i n ( x a ) . s i n ( x b )     d x = 1 s i n ( b a ) s i n ( x a ) c o s ( x b ) s i n ( x a ) . s i n ( x b ) c o s ( x a ) s i n ( x b ) s i n ( x a ) . s i n ( x b )     d x = 1 s i n ( b a ) [ c o s ( x b ) s i n ( x b ) c o s ( x a ) s i n ( x a ) ] d x = 1 s i n ( b a ) [ c o t ( x b ) c o t ( x a ) ] d x = 1 s i n ( b a ) [ l o g s i n ( x b ) l o g s i n ( x a ) ] + C = 1 s i n ( b a ) . l o g | s i n ( x b ) s i n ( x a ) | + C I = c o s e c ( b a ) . l o g | s i n ( x b ) s i n ( x a ) | + C H e n c e , c o r r e c t o p t i o n i s ( c ) .

Q&A Icon
Commonly asked questions
Q:  

Choose the correct option from given four options in each of the Exercises from 1 to 11.

   cos2xcos2θcosxcosθ  dx is equal to

(A) 2(sinx+xcosθ)+C

(B) 2(sinxxcosθ)+C

(C) 2(sinx+2xcosθ)+C

(D) 2(sinx2xcosθ)+C

Read more
A: 

This is a Objective answer type Questions as classified in NCERT Exemplar

Sol:

LetI=cos2xcos2θcosxcosθ  dx=(2cos2x1)(2cos2θ1)cosxcosθ  dx=2cos2x12cos2θ+1cosxcosθ  dx=2cos2x2cos2θcosxcosθ  dx=2cos2xcos2θcosxcosθ  dx=2(cosx+cosθ)(cosxcosθ)(cosxcosθ)  dx=2(cosx+cosθ)dx=2(sinx+cosθ.x)+CHence,correctoptionis(a).

Q:  

dxsin(xa)sin(xb) is equal to

(A) sin(ba)log| sin(xa)sin(xb) |+C

(B) cosec(ba)log| sin(xa)sin(xb) |+C

(C) cosec(ba)log| sin(xa)sin(xb) |+C

(D) sin(ba)log| sin(xa)sin(xb) |+C

A: 

This is a Objective answer type Questions as classified in NCERT Exemplar

Sol:

L e t I = d x s i n ( x a ) . s i n ( x b )     M u l t i p l y i n g a n d d i v i d i n g b y s i n ( b a ) = 1 s i n ( b a ) s i n ( b a ) s i n ( x a ) . s i n ( x b )     d x = 1 s i n ( b a ) s i n ( x + b x a ) s i n ( x a ) . s i n ( x b )     d x = 1 s i n ( b a ) s i n [ ( x a ) ( x b ) ] s i n ( x a ) . s i n ( x b )     d x = 1 s i n ( b a ) s i n [ ( x a ) ( x b ) ] s i n ( x a ) . s i n ( x b )     d x = 1 s i n ( b a ) s i n ( x a ) c o s ( x b ) c o s ( x a ) s i n ( x b ) s i n ( x a ) . s i n ( x b )     d x = 1 s i n ( b a ) s i n ( x a ) c o s ( x b ) s i n ( x a ) . s i n ( x b ) c o s ( x a ) s i n ( x b ) s i n ( x a ) . s i n ( x b )     d x = 1 s i n ( b a ) [ c o s ( x b ) s i n ( x b ) c o s ( x a ) s i n ( x a ) ] d x = 1 s i n ( b a ) [ c o t ( x b ) c o t ( x a ) ] d x = 1 s i n ( b a ) [ l o g s i n ( x b ) l o g s i n ( x a ) ] + C = 1 s i n ( b a ) . l o g | s i n ( x b ) s i n ( x a ) | + C I = c o s e c ( b a ) . l o g | s i n ( x b ) s i n ( x a ) | + C H e n c e , c o r r e c t o p t i o n i s ( c ) .

Q:  

Kindly consider the following

A: 

This is a Objective answer type Questions as classified in NCERT Exemplar

Q:  

ex(1x1+x2)2dx

(A) ex1+x2 + C

(B) ex1+x2+ C

(C) ex(1+x2)2 + C

(D) ex(1+x2)2  + C

A: 

This is a Objective answer type Questions as classified in NCERT Exemplar

Sol:

L e t I = e x ( 1 x 1 + x ) 2   d x   = e x [ 1 + x 2 2 x ( 1 + x 2 ) 2 ] d x = e x [ 1 + x 2 ( 1 + x 2 ) 2 2 x ( 1 + x 2 ) 2 ] d x = e x [ 1 1 + x 2 2 x ( 1 + x 2 ) 2 ] d x H e r e f ( x ) = 1 1 + x 2 f ' ( x ) = 2 x ( 1 + x 2 ) 2 Usingex[f(x)+f'(x)]dx=ex.f(x)+C I = e x . 1 1 + x 2 + C = e x 1 + x 2 + C H e n c e , c o r r e c t o p t i o n i s ( a ) .

Q:  

x9(4x2+1)6dx is equal to

(A) 15x(4+1x2)5+C

(B) 15(4+1x2)5+C

(C) 110(1+4)5+C

(D) 110(1x2+4)5+C

A: 

This is a Objective answer type Questions as classified in NCERT Exemplar

Sol:

L e t I = x 9 ( 4 x 2 + 1 ) 6 d x = x 9 x 1 2 ( 4 + 1 x 2 ) 6 d x = 1 x 3 ( 4 + 1 x 2 ) 6 d x P u t ( 4 + 1 x 2 ) = t 2 x 3 d x = d t d x x 3 = 1 2 d t I = 1 2 d t t 6 = 1 2 × 1 5 t 5 + C = 1 1 0 ( 4 + 1 x 2 ) 5 + C H e n c e , c o r r e c t o p t i o n i s ( d ) .

Q:  

If dx(x+2)(x2+1)=a log|1+x2|+btan1(x)+15log|x+2|+C , then

(A) a=110,b=25

(B) a=110,b=25

(C) a=110,b=25

(D) a=110,b=25

A: 

This is a Objective answer type Questions as classified in NCERT Exemplar

Sol:

LetI=dx(x+2)(x2+1)=alog|1+x2|+btan1x+15log|x+2|+CLetusresolvethegiven integratedintopartialfractionsPut1(x+2)(x2+1)=A(x+2)+Bx+C(x2+1)1=A(x2+1)+(x+2)(Bx+C)1=Ax2+A+Bx2+Cx+2Bx+2C1=(A+B)x2+(C+2B)x+(A+2C)Comparingtheliketerms,wehaveA+B=0(i)2B+C=0(ii)A+2C=1(iii)Subtracting(i)from(ii)weget2CB=1B=2C1PuttingthevalueofBineq.(ii)wehave2(2C1)+C=04C2+C=05C=2C=25B=2(25)1=15andA=15dx(x+2)(x2+1)=15(x+2)dx+15x+25(x2+1)dx=151(x+2)dx15x2(x2+1)dx=151(x+2)dx15x(x2+1)dx+251(x2+1)dx&thi

 

Q:  

x3x+1  is equal to

(A) x+x22+x33log|1x|+C

(B) x+x22x33log|1+x|+C

(C) xx22x33log|1+x+C

(D) xx22+x33log|1x|+C

A: 

This is a Objective answer type Questions as classified in NCERT Exemplar

Sol:

L e t I = x 3 x + 1 d x   I = ( x 2 x + 1 1 x + 1 ) d x = x 3 3 x 2 2 + x l o g | x + 1 | + C = x x 2 2 + x 3 3 l o g | x + 1 | + C H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q:  

x+sinx1+cosxdx is equal to

(A) log|1+cosx|+C

(B) logx|x+sinx|+C

(C) xtanx2+C

(D) tanx2+C

A: 

This is a Objective answer type Questions as classified in NCERT Exemplar

Sol:

L e t I = x + s i n x 1 + c o s x d x   = x 1 + c o s x d x + s i n x 1 + c o s x d x = x 2 c o s 2 x 2 d x + 2 s i n x 2 c o s x 2 2 c o s 2 x 2 d x = 1 2 x . s e c 2 x 2 d x + t a n x 2 d x = 1 2 [ x . s e c 2 x 2 d x ( D ( x ) . s e c 2 x 2 d x ) d x ] + t a n x 2 d x = 1 2 [ x . 2 t a n x 2 2 t a n x 2 d x ] + t a n x 2 d x = x t a n x 2 t a n x 2 d x + t a n x 2 d x + C I = x t a n x 2 + C H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q:  

(A) a=13,b=1

(B) a=13,b=1

(C) a=13,b=1

(D) a=13,b=1

A: 

This is a Objective answer type Questions as classified in NCERT Exemplar

Q:  

π4dx1+cos2xis equal to

(A) 1

(B) 2

(C) 3

(D) 4

A: 

This is a Objective answer type Questions as classified in NCERT Exemplar

Sol:

L e t I = π 4 π 4 d x 1 + c o s 2 x = π 4 π 4 d x 2 c o s 2 x = 1 2 π 4 π 4 s e c 2 x d x = 1 2 [ t a n x ] π 4 π 4 = 1 2 [ t a n π 4 t a n ( π 4 ) ] = 1 2 [ 1 + 1 ] = 1 2 × 2 = 1 H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q:  

Kindly consider the following

A: 

This is a Objective answer type Questions as classified in NCERT Exemplar

Maths NCERT Exemplar Solutions Class 12th Chapter Seven Logo

Integrals Fill in the Blanks

Q1. π 2 c o s x e s i n   x d x  is equal to _______.

Sol:

L e t I = 0 π 2 c o s x . e s i n x d x P u t s i n x = t c o s x d x = d t W h e n x = 0 t h e n t = s i n 0 = 0 ; W h e n x = π 2 t h e n t = s i n π 2 = 1 I = 0 1 e t d t = [ e t ] 0 1 = ( e 1 e 0 ) = e 1 H e n c e , I = e 1

Q2. x + 3 ( x + 4 ) 2 e x   d x  =_______.

Sol:

L e t I = x + 3 ( x + 4 ) 2 . e x   d x = x + 4 1 ( x + 4 ) 2 . e x   d x = [ x + 4 ( x + 4 ) 2 1 ( x + 4 ) 2 ] . e x   d x = [ 1 x + 4 1 ( x + 4 ) 2 ] . e x   d x P u t 1 x + 4 = t 1 ( x + 4 ) 2 d x = d t L e t f ( x ) = 1 x + 4 f ' ( x ) = 1 ( x + 4 ) 2 Using e x [ f ( x ) + f ' ( x ) ] d x = e x f ( x ) + C I = e x . 1 x + 4 + C H e n c e , I = e x x + 4 + C .

Q&A Icon
Commonly asked questions
Q:  

Kindly consider the following

A: 

This is a  Fill in the Blanks type Questions as classified in NCERT Exemplar

Sol:

L e t I = π π s i n 3 x . c o s 2 x d x L e t f ( x ) = s i n 3 x . c o s 2 x f ( x ) = s i n 3 ( x ) . c o s 2 ( x ) = s i n 3 x . c o s 2 x = f ( x ) π π s i n 3 x . c o s 2 x d x i s a n o d d f u n c t i o n . I = 0

Q:  

Kindly consider the following

π2cosxesin xdx is equal to _______.

A: 

This is a  Fill in the Blanks type Questions as classified in NCERT Exemplar

Sol:

LetI=0π2cosx.esinxdxPutsinx=tcosxdx=dtWhenx=0thent=sin0=0Whenx=π2thent=sinπ2=1I=01etdt= [et]01= (e1e0)=e1Hence, I=e1

Q:  

Kindly consider the following

x+3(x+4)2ex dx =_______.

A: 

This is a  Fill in the Blanks type Questions as classified in NCERT Exemplar

Sol:

L e t I = x + 3 ( x + 4 ) 2 . e x   d x = x + 4 1 ( x + 4 ) 2 . e x   d x = [ x + 4 ( x + 4 ) 2 1 ( x + 4 ) 2 ] . e x   d x = [ 1 x + 4 1 ( x + 4 ) 2 ] . e x   d x P u t 1 x + 4 = t 1 ( x + 4 ) 2 d x = d t L e t f ( x ) = 1 x + 4 f ' ( x ) = 1 ( x + 4 ) 2 Usingex[f(x)+f'(x)]dx=exf(x)+C I = e x . 1 x + 4 + C H e n c e , I = e x x + 4 + C .

Q:  

Kindly consider the following

If: a11+4x2dx=π8 ,then, a= _______.

A: 

This is a  Fill in the Blanks type Questions as classified in NCERT Exemplar

Sol:

L e t I = 0 a 1 1 + 4 x 2 d x = π 8 1 4 0 a 1 ( 1 4 + x 2 ) d x = π 8 0 a 1 [ ( 1 2 ) 2 + x 2 ] d x = π 2 1 1 / 2 [ t a n 1 x 1 / 2 ] 0 a = π 2 2 [ t a n 1 2 a t a n 1 0 ] = π 2 t a n 1 2 a = π 4 2 a = t a n π 4 2 a = 1 a = 1 2 H e n c e , t h e v a l u e o f a = 1 2 .

Q:  

Kindly consider the following

sinx3+4cos2xdx=_______

A: 

This is a  Fill in the Blanks type Questions as classified in NCERT Exemplar

qna

Maths NCERT Exemplar Solutions Class 12th Chapter Seven Exam

Student Forum

chatAnything you would want to ask experts?
Write here...