Maths

Get insights from 6.5k questions on Maths, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths

Follow Ask Question
6.5k

Questions

0

Discussions

14

Active Users

0

Followers

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

We have, f(x) = x3+1x3,x0.

f(x)=3x23*1x4=3(x21x4)=3(x61x4).

=3x4[(x2)313]

=3x4(x21)(x4+x2+1) { (a3b3)= (ab)(a2+b2+ab)

f(x)=3(x1)x4(x+1)(x4+x2+1). {?x2b2=(ab) (a+b)

At f(x)=0.

3(x1)(x+1)(x4+x2+1)x4=0

x=1x=1. 3(x4+x2+1)0. 

So we have three disjoint internal i.e.,

(,1],[1,1](1,). 

When, x(,1].

f(x)=(+)ve(ve)(ve)(+ve)(+ve)=(+)ve  and0  at x=1. 

So, f(x) is increasing.

When  x[1,1]

f(x)=(+ve)(v)(+ve)=(ve) 0 atx=1and 1

So, f(x) is decreasing.

When x[1,)

f(x) =  (+ve)(+ve) (+ve)=( +ve) on 0 at x=1

So, f(x) is increasing.

f(x) is increasing for x(∞,1) and [1, ∞] and decreasing for x[1, 1].

New answer posted

5 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

We have, f(x)= 4sinx2xxcosx.2+cosx

=4sinxx(2+cosx)2+cosx

f(x)=4sinx2+cosxx.

So, f(x)=(2+cosx)ddx(4sinx)4sinxddx(2+cosx)(2+cosx)2dxdx.

=(2+cosx)(4cosx)(4sinx)(sinx)(2+cosx)21.

=8cosx+4cos2x+4sin2x(2+cosx)21

=8cosx+4(cos2x+sin2x)(2+cosx)21.

=8cosx+4(2+cosx)21.

=8cosx+4(2+cosx)2(2+cosx)2

=8cosx+444cosxcos2x(2+cosx)2

=4cosxcos2x(2+cosx)2=cosx(4cosx)(2+cosx)2.

Now, (2+cosx)2>0.

And, 4cosx>0 as cos x lies in [1, 1].

So, (i) for increasing, f(x) ≥ 0.

cosx ≥ 0.

x lies in Ist and IVth quadrant.

i.e., f(x) is increasing for 0xx2 and 3x2x2x. 

(ii) for decreasing, f(x) ≤ 0.

cosx ≤ 0.

x lies in IInd and IIIrd quadrant.

i.e., f(x) is decreasing for x2x3x2 .

New answer posted

5 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

We have x=acosθ+aθsinθ

dxdθ=asinθ+asinθ+aθcosθ=aθcosθy=asinθaθcosθdydθ=acosθacosθ+aθsinθ=aθsinθdydx=dydθ.dθdx=aθsinθaθcosθ=tanθ

 Slope of the normal at any point θ is 1tanθ

The equation of the normal at a given point (x,y) is given by,

yasinθ+aθcosθ=1tanθ(xacosθaθsinθ)ysinθasin2θ+aθsinθcosθ=xcosθ+acos2θ+aθsinθcosθxcosθ+ysinθa(sin2θ+cos2θ)=0xcosθ+ysinθa=0

Now, the perpendicular distance of the normal from the origin is

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Equation of the curve is y2=4x.......... (i)

2ydydx=4dydx=42y=2ydydx] (1, 2)=22=1

Now, the slope of the normal at point  (1, 2) is 1dydx] (1, 2)=11=1

 Equation of the normal at  (1, 2) is y2=1 (x1).

y2=x+1x+y3=0

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let 'b' and 'x' be the fixed base and equal side of isosceales triangle.

Then,  dxdt=3 cm/s (Ø decreasing).

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

We have, f(x) logxx,x>0.

f(x) = xddxlogxlogxddxx_x2.

=x*1xlogxx2=1logxx2

f(x) = x2ddx(1logx)(1logx)ddxx2x4

x2(1x)(1logx)(2x)x4

12+2logxx3 = 2logx3x3

At extreme points, f(x) = 0.

1logxx2=0. 

logx=1=loge.

x=e.

At x = e, f"(e) = 2loge3e3=23e3=1e3<0

x = e is a point of maximum.

New answer posted

5 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

(a) Consider y=x14.Let,x=1681&?x=181.

Then,?y=(x+?x)14x14=(1781)14(1681)14=(1781)1423(1781)14=23+?y

Now, dy is approximately equal to ?y and is given by,

dy=(dydx)?x=14(x)34(?x)(as,y=x14)=14(1681)34(181)=274*8*181=132*3=196=0.010

Hence, the approximate value of (1781)14 is 23+0.010=0.667+0.010

=0.677

(b) (33)15

(b) Consider y=x15.Let,x=32&?x=1

Now, dy is approximately equal to ?y and is given by,

dy=(dydx)(?x)=15(x)65(?x)(as,y=x15)=15(x)6(1)=1320=0.003

Hence, the approximate value of 3315
is 12+(0.003=0.497)

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

We have,

f(x)=[X(x - 1)+
1]13,0x1

f(x)=13[x2x+1]23ddx(x2x+1)

=2x13(x2x+1)23

At f(x) = 0.

2x – 1 = 0

x=12[0,1]

f(12)=[12(121)+1]13=[1412+1]13.

=[12+44]13

[34]13?0.90

f(0)=[0(0 - 1)
+1]13=1.

f(1)=[1(1 - 1)+1]
13=1.

Option (B) is

Hence maximum value of f(x) = at x = 1 and x = 0.

Option (c) is correct.

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

We have,

f(x)=1x+x21+x+x2.

f(x)=(1+x+x2)ddx(1x+x2)(1x+x2)ddx(1+x+2)(1+x+x2)2

f(x)=(1+x+x2)(1+2x)(1x+x2)(1+2x)(1+x+x2)2

=1+2xx+2x2x2+2x312x+x+2x2x22x3(1+x+x2)2

=2+2x2(1+x+x2)2=2(1x2)(1+x+x2)2=2(1+x)(1x)(1+x+x2)2

At f(x) = 0.

2(1+x)(1x)(1+x+x2)2=0

x = 1 and x = -1.

At x=1,f(1)=11+11+1+1=13 x=1,f(1)=11+11+1+1=13

At x = -1, f(1)=1+1+111+1=3

The maximum value of f(x) =13x=1

Hence, option (D) is correct.

New answer posted

5 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

The equation of the given curve is

x2 = 2y.

Let p (x, y) be a point on the curve.

The distance of p (x, y) from (0, 5) is say S is given by

 

s2=x2+ (y5)2

Let z = s2 = x2 + y2 + 25 – 10y = 2y + y2 -10y + 25

z = y2 – 8y + 25

So,  dzdy=2y8

d2zdy2=2

At dzdy=02y8=0y=82=4

At y = 4,  d2zdy2=2>0

y = 4, is point of minimum distance.

So, x2 = 2y->x2 = 2 * 4-> x2 = 8 x=±2

Hence, the point of the nearest distance are  (2√2, 4) and

(2√2, 4).

Option (A) is correct.

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 679k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.