Maths

Get insights from 6.5k questions on Maths, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths

Follow Ask Question
6.5k

Questions

0

Discussions

14

Active Users

0

Followers

New answer posted

5 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

Let, x and y be the two positive number

Then, x + y = 16 y = 16 - x

Let p be the sun of the cubes then

p = x3 + y3 = x3 + (16 -x)3 = x3 + (16)3-x3- 48x (16 -x)

p = 163 + 48x2- 76 8x

So,  dpdx=96x768.

d2pdx2=96.

At dpdx=0

96x - 768 = 0

x=76896=8.

∴at x = 8,  d2pdx2=96>0

So, x = 8 is a point of local minima

So, y = 16 - 8 = 8

Hence, x = 8, y = 8

New answer posted

5 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

We have, x + y = 35.

y = 35 - x

Let the product, P =x2 y5

P = x2 (35 -x)5

So,  dpdx = x2 5 (35 -x)4 (1) + (35 -x)5 2x

= x (35 -x)4 [ - 5x + (35 -x) 2]

= x (35 -x)4 [ - 5x + 70 - 2x]

= x (35 -x)4 (70 - 7x)

= 7x (35 -x)4 (10 -x)

At dpdx=0

7x (35 -x)4 (10 -x) = 0

 x = 0, 35, 10

As x is a (+) ve number we have only

x = 10, 35

And again (at x = 35) y = 35 = 0 but yis also a (+) ve number

we get, x = 10 (only)

whenx < 10,

? dpdx= (+ve) (+ve) (+ve)>0

and when x > 10,

dpdx= (+ve)ve (+ve) (ve)= (ve)<0

dpdx changes from (+ ve) to ( -ve) as x increases while passing through 10

Hence, x = 10 is a point of local maxima

So, y = 35 - 10 = 25

∴x = 10 and y = 25

New answer posted

5 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

We have, x + y = 60.where x, y > 0

x = 60 - y.

Let the product P = xy3 = (60 -y) y3 = 60y3-y4

dpdy=180y24y3

= 4y2 (45 -y)

At dpdy=0

4y2 (45 -y) = 0

 y = 0 and y = 45

As y > 0, y = 45

When, y > 45,  dpdy= (+ve) (ve)

= ve < 0

Ad y < 45,  dpdy= (+ve) (+ve)

= (+ ve) > 0

∴p is maximum when y = 45 from + ve to- ve or y increases through 45.

So, x = 60 - y = 6Ø - 45 = 15.

Øx = 15 and y = 45.

New answer posted

5 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

Let 'x' and 'y' be the two number

Then, x + y = 24  y = 24 - x

Let 'P' be their product then,

P = xy = x (24 - x) = 24x -x2

P (x) = 24x -x2

dpdx=242x.

d2pdx2=2.

At dpdx=0

24 - 2x = 0

x=242=12.

So, P (12) d2pdx2=2<0.

x = 12 is a point of local maxima

Hence, y = 24 - 12 = 12.

The uqdtwno (x, y) is (12, 12).

New answer posted

5 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

We have, f(x) = x + sin 2x ,x ∈ [0, 2π].

f(x) = 1 + 2cos 2x

At f(x) = 0

1 + 2 cos2x = 0

cos2x=12=cosπ3=cosππ3=cos2π3

2x=2nπ±2π3,n=1,2,3.

x=nπ±2π3

n=0,x=±π3x=π3[0,2π].

n=1,x=π±π3x=π+π3andππ3

=4π3ad2π3[0,2π]

n=2,x=2π±π3x=2π+π3ad2ππ3.

x=513[0,2π].

Hence, x=π3,2π3,4π3and5π3

Missing

At x=π3,f(π3)=π3+sin2π3=1.05+ sin(ππ3)=1.05+sinπ3

=1.05+√3/2

= 1.05 + 0.87

= 1.92

At x=2π3,f(2π3)=2π3+sin2*2π3 =2.10+sin(π+π3)

=2.10sinπ3=2,100.87

= 1.23

At x=4π3,f(4π3)=4π3+sin2*4π3=42+sin(3xπ3)

=4.2+sinπ3=4.2+0.87.

=5.07.

At x=5π3,f(5π3)=5π3+sin2*5π3=5.25+sin(3x+π3)

=525sin13

= 5.25 - 0.87 = 4.38

At and points,

f(0) = 0 + sin2 * 0 = 0

f(2π) = 2π + sin 2 * 2π = 6.2 + 0 = 6.28

∴Maximum value of f(x) = 6.28 at x = 2π and

minimum value of f(x) = 0 at x= 0

New answer posted

5 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

We have, f (x) = x4- 62x2 + ax + 9, x∈  [0, 2].

f (x) = 4x3- 124x + a

∴f (x) active its maxn value at x = 1 [0, 2]

∴f (1) = 0.

4 (1)3- 124 (1) + a = 0

a = 124 - 4 = 120.

∴a = 120

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

We have, f (x) =2x3- 24x + 107, x [1,3]

f (x) = 6x2- 24.

At f (x) = 0

6x2- 24= 0

x2=246=4

x = ±2. ->x = 2 ∈ [1, 3].

So, f (2) = 2 (2)3- 24 (2) + 107 = 16 - 48 + 107 = 75.

f (1) = 2 (1)3- 24 (1) + 107 = 2 - 24 + 107 = 85.

f (3) = 2 (3)3- 24 (3) + 107 = 54 - 72 + 107 = 89

∴ Maximum value of f (x) in interval [1, 3] is 89 at x = 3.

When x ∈  [ -3, -1]

From f (x) = 0

x = -2 ∈ [ -3, -1]

So, f (- 2) = 2 (- 2)3- 24 (- 2) + 107 = - 16 + 48 + 107 = 139.

f (- 3) = 2 (- 3)3- 24 (- 3) + 107 = - 54 + 72 + 107 = 125.

f (- 1) = 2 (- 1)3- 24 (- 1) + 107 = - 2 + 24 + 107 = 129.

∴ Maximum value of f (x) in interval [ -3, -1] is 139 at x = -2.

New answer posted

5 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

We have, f (x) = sin x + cos x.

f (x) = cos x - sin x.

At f (x) = 0

cosx - sin x = 0

sinx = cos x

sinxcosx=1.

tanx=1=tanπ4

x=π4orx=nπ+π4.

At x=π4+nπ ,

f (nπ+π4)=sin (nπ+π4)+cos (nx+π4).

= (1)xsinπ4+ (1)nsinπ4.

New answer posted

5 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

We have, f(x) = sin 2x, x ∈ [0, 2π],

f(x) = 2cos 2x.

At f(x) = 0.

2 cos 2x = 0

cos 2x = 0

2x=(2x+1)π2,x=0,1,2,3.

x=(2x+1)π4.

x=π4,3π4,5π4,7π4,[0,2π]

f(π4)=sin2π4=sinπ2=1 .

f(3π4)=sin2(3π4)= sin3π2 f(7π4)

=sin(π+π2)= =sin2*7π4

=sinπ2 =sin7π2

= 1. =sin3π+π2

f(5π4)=sin2*(5π4)=sin5π2=sin(2x+π4) =sinπ2

=sinπ4=1 = 1.

f(0) = sin 2(0) = sin 0 = 0

f(2π) = sin 2(2π) = sin 4π = 0

Hence, the points of maximum xfx are.

(π4,2)and (5π4,1).

New answer posted

5 months ago

0 Follower 6 Views

V
Vishal Baghel

Contributor-Level 10

We have, f (x) = 3x4- 8x3 + 12x2- 48x + 25, x ∈  [0, 3].

f (x) = 12x3- 24x2 + 24x - 48.

At f (x) = 0.

12x3- 24x2 + 24x - 48 = 0.

x3- 2x2 + 2x - 4 = 0

x2 (x - 2) + 2 (x - 2) = 0

(x - 2) + (x2 + 2) = 0

x = 2 ∈ [0, 3] or x = ±√-2 which is not possible as

∴f (x) = 3 (2)4- 8 (2)3 + 12 (2)2- 4 (2) + 25.

=48 - 64 + 48 - 96 + 25.

= -39.

f (0) =3 (0)4- 8 (0)3 + 12 (0)2- 48 (0) + 25.

= 25.

f (3) = 3 (3)4- 8 (3)3 + 12 (3)2- 48 (3) + 25.

= 243 - 216 + 108 - 144 + 25

= 16.

Maximum value of f (x) = 25 at x = 0.

and minimum value of f (x) = -39 at x = 2.

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 679k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.