Ncert Solutions Maths class 11th

Get insights from 1.6k questions on Ncert Solutions Maths class 11th, answered by students, alumni, and experts. You may also ask and answer any question you like about Ncert Solutions Maths class 11th

Follow Ask Question
1.6k

Questions

0

Discussions

17

Active Users

83

Followers

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

25. Let e and d the first term and common difference of an AP.

Then,

Sum of first p terms, Sp=a.

p2[2e+(p1)d]=a

12[2e+(p1)d]=ap .

Similarly, Sq=b

q2[2e+(q1)d]=b

12[2e+(q1)d]=bq ----------------(2)

And. Sr=C

r2[2e+q(r1)d]=c

12[2c+(r1)d]=cr -----------------(3)

So, L.H.S. ap(qr)+bp(np) + cr(pq) (? given)

12[2e+(p1)d](qr) + 12[2e+(q1)d](rp) + 12[2e+(r1)d](pq)

2e2(qr)+d2(p1)(qr)+2e2(np) + d2(q1)(rp) + 2e(pq)2e+d2(r1)(pq)

=c[q – r+r – p+p – q]+ d2 [(p – 1)(q – r)+(q – 1)(r – p)+(r – 1)(p – q)]

=C * 0 + d2 [pq – pr – q+r+qr – pq – r+p+pr=qr – p+q]

=0+ d2 [pq – pq – pr+pr – q+q+r – r+qr+qr+p – p]

d2[0]

=0.

=R.H.S.

New answer posted

4 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

24. Let a and d be the first elements and common different of the A.P.

Then, Sum of first p terms of the AP=Sum of first q terms of A.P

Sp=Sq

p2 [2a+ (p1)d]=q2 [2a+ (q1)d]

p [2a+pd – d]=q [2a+qd – d]

2ap+p2d – pd=2aq+q2d – qd

2ap – 2aq+p2d – q2d – pd+qd=0

2a (p – q)+ [p2 – q2 – p+q]d=0.

2a (p – q)+ [ (p – q) (p+q) – (p – q)]d=0

(p – q) {2a+ [ (p+q) – 1]d}=0

Deviding both sides by p – q,

2a+ [ (p+q) –1]d=0.

And multiplying by P+Q/2 we get,

p+q2 {2a+ [ (p+q)1]d}=0 which in the form n2 {2a+ (n1)d} where n=p+q.

Sp+q=0.

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

23. Let a1, a2 be the first terms and d1, d2 be the common difference of the first term A.P.S

So, Sum ofntermofIstAPSum of n terms of 2nd AP=5n+49n+6

n2[2a1+(n1)d1]n2[2a2+(n1)d2]=5n+49n+6

2a1+(n1)d2a2+(n1)d=5n+49n+6 ---------------(1)

The ratio of their 18thterms.

a18offirstA.Pa18ofsecondA.P=a1+(181)d1a2+(181)d2

a1+17d1a2+17d2

a1+17d1a2+17d2*22

2a1+34d12a2+35d2 --------(2)

Comparing eqn (1) and (2),

2a1+34d12a2+35d2=2a1+(351)d12a2+(351)d1=5*35+49*35+6 = 179321

So, ratio of their 18th terms = 179321

New answer posted

4 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

22. Given, sum of n terms of A.P, Sn= (pn+qn2), p&q are constants substituting n=1,

S1=p* 1+q* 12=p+q=a1 [sum upto1st term only]

And substituting n=2,

S2=p* 2+q* 22=2p+4q=a1+q2  [sum upto 2ndtern only]

So,  a1+a2=2p+4q

⇒ a2=2p+4q – a1=2p+4q – (p+q)=2p – p+4q – q

⇒ a2=p+3q

So, common difference,  d=a2 – a1

= (p+3q) – (p+q)

=p+3q – p – q

=2q.

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

21. Given, ak =5k+1

Putting k =1,

a1 =5 * 1+1=5+1=6.

an =5n+1=l

So, sum of unto n teams of the AP, Sn = n2 [2a+l]

Sn = n2 [6+5n+1]

n2 [7+5n] .

New answer posted

4 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

20. The given A.P. is 25,22,19, …

So, a=25

d=22 – 25= –3

Given that, sum of first n terms of the AP=116.

n [2 * 25+ (n – 1) (–3)]=116 * 2

n [50 – 3n+3]=232

n [53 – 3n]=232 .

53n – 3n2=232.

3n2 – 53n+232.

Using quadratic formula, a=3, b= –53, c=232.

n = 53+56 or 5356

586 or 486

293 or 8.

As n  N, n=8.

? Last term=a+ (n – 1)d

=a+ (8 – 1)d

=25+7* (–3)

=25 – 21

=4.

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

19. Let a and d be the first term and the common difference of an A.P.

Then, given ap = 1q

a+(p – 1)d = 1q --------(1)

and aq = 1p

a+(q – 1)d = 1p ---------(2)

Subtracting eqn (2) from (1) we get,

a+(p – 1)d – [a+(q – 1)d]= 1q1p

a+(p – 1)d– a–(q– 1)d= pqpq

[(p – 1)–(q – 1)]d= pqpq

[p – 1 – q+1]d= pqpq

[p – q]d= pqpq .

d= 1pq .

Putting d= 1pq in eqn (1) we get,

a+(p1)1pq=1q .

a+1pq1pq=1q

a+1q1pq=1q

a=1q1q+1pq a=1pq .

So, sum of first pq terms,

Spq=pq2[2*1pq+(pq1)1pq]

pq2*1pq[2+pq1] .

12[pq+1]

New answer posted

4 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

18. Let the sum of n farms of the A.P –6, 112 , –5, …. gives –25.

Then, 

From the given A.P.

a= –6

d= – 112(6)=112+6=11+122=12

So, –25= n2[2*(6)+(n1)(12)]

–25 * 2=n [12+n12]

–50=n [12*2+(n1)2]

–50=n [24+n12]

–50 * 2 =n[n – 25]=n2 – 25n

n2 – 25n+100=0.

n2 – 5n – 20n+100=0

n(n – 5) – 20(n – 5)=0

(n – 5)(n – 20)=0

So, n=5 and n=20.

When n=5

S5=52[12+(51)12]=52[12+4*12]=52[12+2]=52*(10) = –25.

When n=20

S20=202[12+(201)12]=10[12+192] = 120+19*102 = –120 + 19 * 5 = –120 + 95 = –25.

New answer posted

4 months ago

0 Follower 1 View

P
Payal Gupta

Contributor-Level 10

17. Given, a=2

Let A1, A2, A3, A4, A5, A6, A1, A6, A7, A10 be the first ten terms. So, A1=a.

Given A1+A2+A3+A4+A5= 14  (A6+A1+A8+A1+A10)

a+ (a+d)+ (a+2d)+ (a+3d)+ (a+4d)

14  [ (a+5d)+ (a+6d)+ (a+7d)+ (a+8d)+ (a+9d)]

5a+10d= 14  [5a+35d].

4 [5a+10d]=9a+35d.

20a+40d=5a+35d.

40d – 35d=5a – 20a

5d= –15a

d= –3a

d= –3 * 2 [as a=2]

d= –6

So, A20=a+ (20 – 1)d

=2+19 * (–6)

=2 – 114

= –112.

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

16. Sum of all natural number between 100 and 1000 which are multiple of 5.

=105+110+115+ … +995.

So, a=105.

a=110 – 105=5.

As the last term is 995 which is the nthterm,

a+ (n – 1)d =995.

105+ (n – 1) * 5 =995.

(n – 1) * 5=995 – 105.

(n – 1)5 =890

n – 1 = 8905=178

n =178+1

n =179

So, required sum Sn n2 (a+l); l=last term.

=1792 (105+995)

=1792*1100

= 179 * 550

=98450.

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 687k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.