Ncert Solutions Maths class 11th

Get insights from 1.6k questions on Ncert Solutions Maths class 11th, answered by students, alumni, and experts. You may also ask and answer any question you like about Ncert Solutions Maths class 11th

Follow Ask Question
1.6k

Questions

0

Discussions

17

Active Users

83

Followers

New answer posted

4 days ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

? ae = 2b

4 b 2 a 2 = e 2  

Or 4 (1 – e2) = e2

4 = 5e2 -> e = 2 5

New answer posted

4 days ago

0 Follower 1 View

A
alok kumar singh

Contributor-Level 10

If two circles intersect at two distinct points

->|r1 – r2| < C1C2 < r1 + r2

| r – 2| <  9 + 1 6 < r + 2

|r – 2| < 5                     and r + 2 > 5

–5 < r 2 < 5                    r > 3                      … (2)

–3 < r < 7                                                        (1)

From (1) and (2)

3 < r < 7

New answer posted

6 days ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

l i m n k = 1 n n 3 n 4 ( 1 + k 2 n 2 ) ( 1 + 3 k 2 n 2 )

= l i m n 1 n k 1 n 1 ( 1 + k 2 n 2 ) ( 1 + 3 k 2 n 2 )

= 0 1 d x 3 ( 1 + x 2 ) ( 1 3 + x 2 )

= 0 1 1 3 * 3 2 ( x 2 + 1 ) ( x 2 + 1 3 ) ( 1 + x 2 ) ( x 2 + 1 3 ) d x

= 1 2 [ 3 t a n 1 ( 3 x ) ] 0 1 1 2 ( t a n 1 x ) 0 1

= 3 2 ( π 3 ) 1 2 ( π 4 ) = π 2 3 π 8

New answer posted

6 days ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

S20 = 2 0 2 [2a + 19d] = 790

2a + 19d = 79              . (1)

S 1 0 1 0 2 [ 2 a + 9 d ] = 1 4 5

2a + 9d = 29                . (2)

from (1) and (2) a = –8, d = 5

S 1 5 S 5 = 1 5 2 [ 2 a + 1 4 d ] 5 2 [ 2 a + 4 d ]

= 1 5 2 [ 1 6 + 7 0 ] 5 2 [ 1 6 + 2 0 ]  

= 405 – 10

= 395

New answer posted

a week ago

0 Follower 1 View

A
alok kumar singh

Contributor-Level 10

x + 2y + 3z = 42

0    x + 2y = 42 ->22 cases

1    x + 2y = 39 ->19 cases

2    x + 2y = 36 ->19 cases

3    x + 2y = 33 ->17 cases

4    x + 2y = 30 ->16 cases

5    x + 2y = 27 ->14 cases

6    x + 2y = 24 ->13 cases

7    x + 2y = 21 ->11 cases

8    x + 2y = 18 ->10 cases

9    x + 2y = 15 ->8 cases

10  x + 2y =12 -> 7 cases

11  x + 2y = 9 -> 5 cases

12  x + 2y = 6 -> 4 cases

13  x + 2y = 3 -> 2 cases

14  x + 2y = 0 -> 1 cases.

New answer posted

a week ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

t a n B * t a n C = x x 2 + x + 1 * 1 x ( x 2 + x + 1 )

= 1 x 2 + x + 1 = t a n 2 A            

tan2 A = tan B tan C

It is only possible when A = B = C at x = 1

A = 30°, B = 30°, C = 30° [ t a n A = t a n B = t a n C = 1 3 ]                                 

A + B = π 2 C

New answer posted

a week ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

|r1 – r2| < c1c2 < r1 + r2

-> | 2 4 λ 2 9 | < | 2 λ | < 2 + 4 λ 2 9

| 2 λ | 2 < 4 λ 2 9    

4 λ 2 + 4 8 | λ | < 4 λ 2 9

  λ > 1 3 8 , λ < 1 3 8           

4 λ 2 9 > 0

λ > 3 2 , λ < 3 2

λ ( , 1 3 8 ) ( 1 3 8 , )           

Now,

| 2 4 λ 2 9 | < | 2 λ |            

4 + 4 λ 2 9 4 4 λ 2 9 < 4 λ 2  

4 4 λ 2 9 > 5 λ R  

λ ( , 1 3 8 ) ( 1 3 8 , )  

New answer posted

a week ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

x2 – y2 cosec2q = 5 x 2 1 y 2 s i n 2 θ = 5                        

x2 cosec2q + y2 = 5  x 2 s i n 2 θ + y 2 1 = 5        

e H = 7 e e                  

and e H = 1 + s i n 2 θ 1  

-> 1 + s i n 2 θ = 7 1 s i n 2 θ

1 + sin2q = 7 – 7 sin2q

->8sin2q = 6

-> s i n θ = 3 4 = 3 2  

-> θ = π 3  

New answer posted

a week ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

Total ways to partition 5 into 4 parts are:

5 0 

4 1 0  5!4!=5

3 2 0 5 ! 3 ! 2 ! = 1 0

3 1 0 5 ! 2 ! 2 ! 2 ! = 1 5

2 1 5 ! 2 ! * 3 ! = 1 0

51 Total way

New answer posted

a week ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

3, 7, 11, 15, 19, 23, 27, . 403 = AP1

2, 5, 8, 11, 14, 17, 20, 23, . 401 = AP2

so common terms A.P.

11, 23, 35, ., 395

->395 = 11 + (n – 1) 12

->395 – 11 = 12 (n – 1)

3 8 4 1 2 = n 1    

32 = n – 1

n = 33

Sum =  3 3 2 [2*11+ (32)12]

3 3 2 [22 + 384]

= 6699

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.