Ncert Solutions Maths class 12th

Get insights from 2.5k questions on Ncert Solutions Maths class 12th, answered by students, alumni, and experts. You may also ask and answer any question you like about Ncert Solutions Maths class 12th

Follow Ask Question
2.5k

Questions

0

Discussions

16

Active Users

65

Followers

New answer posted

5 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

We have,

R=  { (1, 2), (2, 1)} is a relation in set  {1, 2, 3}

Then, as  (1, 1)R and  (2, 2)R

So, R is not reflective

As  (1, 2)R and  (2, 1)R

So, R is symmetric

And as  (1, 2)R, (2, 1)R but  (1, 1)R

So, R is not transitive.

New answer posted

5 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

We have,

R= {(a,b):ab3} is a relation in R.

For, (a,b)R and a=12 we can write

aa3 => 12(12)3 => 1218 which is not true.

So, R is not reflexive.

For (a,b)=(1,2)R we have,

ab3 => 123 => 18 is true.

So, (1,2)R

But 213 => 21 is not true

So, (2,1)R and (b,a)R

Hence, R is not symmetric.

For, (a,b)=(10,4) and (b,c)=(4,2)R

1043 => 1064 is true=> (10,4)R

423 => 48 is true=> (4,2)R

But 1023 => 108 is not true=> (10,2)R

Hence, for (a,b),(b,c)R,(a,c)R

So, R is not transitive.

New answer posted

5 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

We have, R=  { (a, b):ab} is a relation in R.

For,  aR ,

ab but ba is not possible i.e.,   (b, a)R

Hence, R is not symmetric.

For  (a, b)R& (b, c)R and a, b, cR

ab and bc

So,  ac

i.e.,   (a, c)R

 R is transitive.

New answer posted

5 months ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

We have,

R=  { (a, b):b=a+1} is a relation in set  {1, 2, 3, 4, 5, 6}

So, R=  { (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7)}

As,   (1, 1)R , R is not reflexive

As,   (1, 2)R but  (2, 1)R , R is not symmetric

And as  (1, 2) &  (2, 3)R but  (1, 3)R

Hence, R is not transitive.

New answer posted

5 months ago

0 Follower 6 Views

V
Vishal Baghel

Contributor-Level 10

We have,

R= {(a,b):ab2} is a relation in R.

For aR then is b=a,aa2 is not true for all real number less than 1.

Hence, R is not reflexive.

Let (a,b)R and a=1 and b=2

Then, ab2 = 122 = 14 so, (1,2)R

But (b,a)=(2,1)

i.e., 212 = 21 is not true

so, (2,1)R

hence, R is not symmetric.

For, (a,b)=(10,4)&(b,c)=(4,2)R

We have, a=1042=b2 => 1016 is true

So, (10,4)R

And 422 => 44 So, (4,2)R

But 1022 => 104 is not true.

So, (10,2)R

Hence, R is not transitive.

New answer posted

5 months ago

0 Follower 57 Views

V
Vishal Baghel

Contributor-Level 10

(i) We have, R={(x,y):3xy=0} a relation in set A= {1,2,3..........14}

For xA,y=3x or yx i.e.,

(x,x) does not exist in R

 R is not reflexive.

For (x,y)R,y=3x

Then (y,x)x3y

So (y,x)R

 R is not symmetric

For (x,y)R and (y,z)R . We have

y=3x and z=3y

Then z=3(3x)=9x

i.e., (x,z)R

 R is not Transitive

(ii) We have,

R= {(x,y):y=x+5 &x<4} is a relation in N

{(1,1+5),(2,2+5),(3,3+5)}

{(1,6),(2,7),(3,8)}

Clearly, R is not reflexive as (x,x)R and x<4&xN

Also, R is not symmetric as (1,6)R but (6,1)R

And for (x,y)R(y,z)R . Hence, R is not Transitive.

(iii) R= {(x,y);y is divisible by x } is a relation in set

A= {1,2,3,4,5,6}

So, R= {(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,2),(2,4),(2,6),(3,3),(3,6),(4,4),(5,5),(6,6)}

Hence, R is reflexive because (1,1),(2,2),(3,3),(4,4),(5,5),(6,6)R i.e., (x,x)R

R is not sy

...more

New answer posted

5 months ago

0 Follower 1 View

C
Chandra Pruthi

Beginner-Level 5

students can check the table for the principal values for all ITFs below;

FunctionPrincipal Value Range (in radians)
sin? ¹x–? /2 to? /2
cos? ¹x0 to?
tan? ¹x–? /2 to? /2
cot? ¹x0 to?
sec? ¹x0 to? (except? /2)
cosec? ¹x–? /2 to? /2 (except 0)

New answer posted

5 months ago

0 Follower 2 Views

H
Himanshi Singh

Beginner-Level 5

To understand this, Assume you have a bucket that has infinite number of apples and if your mother asks "give me the apple". How will you figure out which one is "The Apple", she is asking for.

Similarly any inversre trigonometric functions behaves like a Many-one Function; which means,

For Example sin? ? 1 (23)\sin^ {-1}\left (\frac {2} {3}\right) can have many solutions, we need to fix one solutions which can be used as standerd value for the function.

  • A standerd value (Angles) of any inverse trigonometric value lies between a fiexed range is known as principal value. 

For Ex; The value of sin? ? 1 (23)\sin^ {-1}\left (\frac {2} {3}\right) will always lie between –? /2 to? /2.


y = sin ?1 ( 2 3 ) ? sin ( y ) = 2 3 ? y ? [ ? ? 2 , ? 2 ]  

New answer posted

5 months ago

0 Follower 8 Views

Rajveer rawat

New answer posted

5 months ago

0 Follower 3 Views

J
Jaya Sinha

Beginner-Level 5

The Class 12 Relations and Functions explores various types of Functions, Students can check main types dicussed in this chapter below;

  • One-One Function (Injective)

  • Onto Function (Surjective)

  • One-One and Onto Function (Bijective)

  • Identity Function

  • Constant Function

  • Inverse of a Function

  • Composite Functions

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 687k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.