Ncert Solutions Maths class 12th

Get insights from 2.5k questions on Ncert Solutions Maths class 12th, answered by students, alumni, and experts. You may also ask and answer any question you like about Ncert Solutions Maths class 12th

Follow Ask Question
2.5k

Questions

0

Discussions

16

Active Users

65

Followers

New answer posted

5 months ago

0 Follower 8 Views

V
Vishal Baghel

Contributor-Level 10

Given, f:AB defined by f(x)=(x2x3)

Let x1,x2A=R{3} such that

f(x1)=f(x2)

x12x13=x22x23

(x12)(x23)=(x22)(x13)

x1x23x12x2+6=x2x13x22x1+6

2x13x1=2x23x2

x1=x2

x1=x

So, f is one-one

For yB=R{1} there exist f(x)=y such that

x2x3=y

x2=xy3y

xxy=23y

x(1y)=23y

x=23y1y where y1.A

Thus, f(23y1y)=(23y1y)2(23y1y)3=23y2+2y23y3+3y

y1=y

f is onto

New answer posted

5 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

Given, f:NN defined f(x)=(x+12,ifxisoddx2,ifxiseven) xN

Let x1=1 and x2=2N,

f(x1)=f(x2)f(1)=f(2)

1+12=22

1=1 but 12

So, f is not one-one

For x= odd and xN , say x=2C+1 where CN

There exist (4C+1) N such that

(4C+1)=4C+1+12=2C+1.N

And for x= even N , say x=2C where CN

There exist (4C)N such that

f(4C)=4C2=2C.N

So, f is onto

But, f is not bijective

New answer posted

5 months ago

0 Follower 13 Views

V
Vishal Baghel

Contributor-Level 10

Given, f:A*BB*A defined as f(a,b)=(b,a)

Let (a1,b1),(a2,b2)A*B such that

f(a1,b1)=f(a2,b2)

(b1,a1)=(b2,a2)

So, b1=b2 and a1=a2

(a1,b1)=(a2,b2)

f is one-one

For (a,b)B*A

There exist (a,b)A*B such that f(a,b)=(b,a)

f is onto

Hence, f is bijective

New answer posted

5 months ago

0 Follower 12 Views

V
Vishal Baghel

Contributor-Level 10

(i) f:RR defined as f(x)=34x

For x1,x2R such that f(x1)=f(x2)

34x1=34x24x1=4x2x1=x2

So, f is one-one

For yR , there exist

f(.3y4)=34(3y4)=33+y=y

Hence, f is onto

f is bijective

(ii) Given, f:RR defined as f(x)=1+x2

For x1,x2R such that f(x1)=f(x2)

1+x12=1+x22x12=x22x1=±x2

x1=x2 or x1=x2

f is not one-one

The range of f(x) is always a positive real number which is not equal to co-domain R

So, f is not onto

New answer posted

5 months ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

Given,  f:AB and f= { (1, 4), (2, 5), (3, 6)}

f (1)=4f (2)=5f (3)=6

i.e., the image elements of A under the given fXn f are unique

So,  f is one-one

New answer posted

5 months ago

0 Follower 19 Views

V
Vishal Baghel

Contributor-Level 10

The fxn f:R? R is given by f (x)= (1ifx>00ifx=0? 1ifx<0)

For x1=1, x2=2, ? R

f (x1)=f (1)=1

f (x2)=f (2)=1 but 1? 2

So,  f is not one-one

And the range of f (x)= {1, 0, ? 1} hence it is not equal to the co-domain R

So,  f is not onto

New answer posted

5 months ago

0 Follower 6 Views

V
Vishal Baghel

Contributor-Level 10

The fxn f:RR is given by f(x)=|x|

f(x)=(x,ifx0x,ifx<0)

For x1=1 and x2=1

f(x1)=f(1)=|1|=1

f(x2)=f(1)=|1|=1

So, f(x1)=f(x2) but x1x2

i.e., f is not one-one

For x=1R

f(x)=|x|

i.e., f(1)=|1|=1

So, range of f(x) is always a positive real number and is not equal to the co-domain R

i.e., f is not onto

New answer posted

5 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

The fxn f:RR is given by f(x)=[x]

Let x1=1.5 and x2=1.2R Then,

f(x1)=f(1.5)=[1.5]=1

f(x2)=f(1.2)=[1.2]=1

So, f(x1)=f(x2) but x1x2

i.e., f(1.5)=f(1.2) but 1.51.2

So, f is not one-one

The range of f(x) is a set of all integers, Z which is not a co-domain of R

f is not onto

New answer posted

5 months ago

0 Follower 34 Views

V
Vishal Baghel

Contributor-Level 10

(i) f:NN given by f(x)=x2

For, x1,x2N , f(x1)=f(x2)

x12=x22

x1=x2N

So, f is one-one/ injective

For xN , i.e., x=1,2,3....

Range of f(x)={12,22,32...}={1,4,9...}N

i.e., co-domain of N

So, f is not onto/ subjective

(ii) f:ZZ given by f(x)=x2

For, x1,x2Z , f(x1)=f(x2)

x12=x22

x1=±x2Z

i.e., x1=x2 and x1=x2

So, f is not one-one/ injective

For xZ , x=0,±1,±2,±3....

Range of f(x)={02,(±1)2,(±2)2,(±3)2...}

{0,1,4,9....} co-domain Z

So, f is not onto/ subjective

(iii) f:RR given by f(x)=x2

For, x1,x2R , f(x1)=f(x2)

x12=x22

x1=±x2

So, f is not injective

For xR

Range of f(x)={x2,xR} gives a set of all positive real numbers

Hence, range of f(x) co-domain of R

So, f is not subjective

(iv) f:NN given by&n

...more

New answer posted

5 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

The fx n is f(x)=1x , which is a f:R*  R* and R* is set of all non-zero real numbers

For, x1,x2R*,f(x1)=f(x2)

1x1=1x2

x1=x2 So, f is one-one

For, yR*, x=1f(x)=1y such that

So, f(x)=y

So, every element in the co-domain has a pre-image in f

So, f is onto

If f:NR* such that f(x)=1x

For, x1,x2N, f(x1)=f(x2)

1x1=1x2

x1=x2 So, f is one-one

For, yR* and f(x)=y we have x=1yN

Eg., 3R* so x=13N

So, f is not onto

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 687k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.