Ncert Solutions Maths class 12th

Get insights from 2.5k questions on Ncert Solutions Maths class 12th, answered by students, alumni, and experts. You may also ask and answer any question you like about Ncert Solutions Maths class 12th

Follow Ask Question
2.5k

Questions

0

Discussions

16

Active Users

65

Followers

New answer posted

a month ago

0 Follower 7 Views

A
alok kumar singh

Contributor-Level 10

P (at least one head) = 1 - P (no heads) = 1 - (1/2)? ≥ 0.9.
0.1 ≥ (1/2)?
10 ≤ 2?
n=3, 2³=8. n=4, 2? =16.
Minimum value of n is 4.

New answer posted

a month ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

(a+3b). (7a-5b) = 7|a|² - 5ab + 21ab - 15|b|² = 7|a|²+16ab-15|b|²=0.
(a-4b). (7a-2b) = 7|a|² - 2ab - 28ab + 8|b|² = 7|a|²-30ab+8|b|²=0.
Subtracting: 46ab - 23|b|² = 0 ⇒ 2ab = |b|².
Substituting: 7|a|² + 8|b|² - 15|b|² = 0 ⇒ 7|a|² = 7|b|² ⇒ |a|=|b|.
cosθ = ab/ (|a|b|) = ab/|b|² = (1/2)|b|²/|b|² = 1/2.
θ = 60°.

New answer posted

a month ago

0 Follower 1 View

V
Vishal Baghel

Contributor-Level 10

f (1)=1.
f (4)=f (2)²=1 or 4.
f (6)=f (2)f (3).
Possible functions determined by values at primes: f (2), f (3), f (5), f (7).
f (2) can be 1 or 2. f (3) can be 1 or 3. f (5)=1,5. f (7)=1,7.
If f (m)=m, f (mn)=mn. One function. f (x)=1 is another.
What if f (2)=1, f (3)=3? f (6)=3.

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

Determinant of vectors must be zero. Vector between points on lines: (-1-k, -2-2, -3-3). Vector directions: (1,2,3) and (3,2,1).
| -1-k, -4, -6; 1, 2, 3; 3, 2, 1 | = 0.
(-1-k) (2-6) - (-4) (1-9) + (-6) (2-6) = 0.
4 (1+k) - 32 + 24 = 0.
4+4k - 8 = 0. 4k=4 ⇒ k=1.

New answer posted

a month ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

a*b=c ⇒ a.c=0,  b.c=0.
|c|² = |a|²|b|² - (a.b)² = (3)|b|² - 1. |c|=√2. So |b|²=1, |b|=1.
Projection of b on a*c.
a*c = a* (a*b) = (a.b)a - (a.a)b = a - 3b.
|a-3b|² = |a|²+9|b|²-6 (a.b) = 3+9-6 = 6.
l = |b. (a-3b)|/|a-3b| = | (a.b)-3|b|²|/√6 = |1-3|/√6 = 2/√6.
3l² = 3 (4/6) = 2.

New answer posted

a month ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Vector on plane: (3-2, 7-3, -7- (-2) = (1,4, -5).
Line direction vector (-3,2,1).
Normal to plane n = (1,4, -5)* (-3,2,1) = (14,14,14) or (1,1,1).
Plane: 1 (x-3)+1 (y-7)+1 (z+7)=0 ⇒ x+y+z-3=0.
d = |-3|/√3 = √3. d²=3.

New answer posted

a month ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

(a+b+c)² = a²+b²+c²+2 (ab+bc+ca)
1² = a²+b²+c²+2 (2) ⇒ a²+b²+c² = -3.
a²b²+b²c²+c²a² = (ab+bc+ca)² - 2abc (a+b+c) = 2² - 2 (3) (1) = -2.
a? +b? +c? = (a²+b²+c²)² - 2 (a²b²+b²c²+c²a²) = (-3)² - 2 (-2) = 9+4=13.

New answer posted

a month ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Using L'Hopital Rule:
lim (x→2) (2xf (2) - 4f' (x)/1 = 2 (2)f (2) - 4f' (2) = 4 (4) - 4 (1) = 12.

New answer posted

a month ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

I = ∫? π/? π/? dx/ (1+e^ (xcosx) (sin? x+cos? x). Using ∫? f (x)dx = ∫? f (a+b-x)dx. a+b=0.
I = ∫? π/? π/? dx/ (1+e? ) (sin? x+cos? x) = ∫? π/? π/? e? dx/ (e? +1) (sin? x+cos? x).
2I = ∫? π/? π/? dx/ (sin? x+cos? x) = 2∫? π/? dx/ (sin? x+cos? x).
I = ∫? π/? sec? xdx/ (tan? x+1). Let t=tanx.
I = ∫? ¹ (t²+1)dt/ (t? +1) = ∫? ¹ (1+1/t²)dt/ (t²-√2t+1) (t²+√2t+1). No, this is hard.
I = ∫? ¹ (1+1/t²)dt/ (t-1/t)²+2). Let u=t-1/t. I = ∫ du/ (u²+2) = (1/√2)tan? ¹ (u/√2).
= π/ (2√2).

New answer posted

a month ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

(2? -2) is multiple of 3.
If n is odd, 2? ≡ (-1)? =-1 (mod 3). 2? -2 ≡ -1-2 = -3 ≡ 0 (mod 3).
If n is even, 2? ≡ (-1)? =1 (mod 3). 2? -2 ≡ 1-2 = -1 (mod 3).
So n must be odd.
2-digit numbers are 10-99 (90 numbers).
Odd numbers are 11,13, .,99. Number of terms = (99-11)/2 + 1 = 45.
Probability = 45/90 = 1/2.

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.